Notebook
In [1]:
from quantopian.research import prices, symbols
from quantopian.pipeline.filters import Q1500US
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from quantopian.pipeline import Pipeline
import scipy.stats as stats
import seaborn as sns
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.research import run_pipeline
from quantopian.pipeline.filters.morningstar import Q500US, Q1500US
from quantopian.pipeline.data import Fundamentals
from quantopian.pipeline.classifiers.morningstar import Sector
from quantopian.pipeline.data.morningstar import valuation
from quantopian.pipeline.data.morningstar import valuation_ratios
from quantopian.pipeline.data.morningstar import asset_classification
In [2]:
    Close = USEquityPricing.close.latest
    Open = USEquityPricing.open.latest
    pb_ratio = valuation_ratios.pb_ratio.latest
    pb_ratio_dec = pb_ratio.quantiles(10) #Adjusted close price / Book Value Per Share.
    forward_earning_yield = valuation_ratios.forward_earning_yield.latest
    forward_earning_yield_dec = forward_earning_yield.quantiles(10) #Estimated Earnings Per Share / Price
    Intraday_Return = (Close - Open)/Close
    sector = Sector ()
    
pipe = Pipeline(
    columns={
        'Close': USEquityPricing.close.latest,
        'Open' : Open,
        'Pb Ratio' : pb_ratio,
        'Pb Ratio Dec': pb_ratio_dec,
        'Forward Earning Yield' : forward_earning_yield,
        'Forward Earning Yield Dec' : forward_earning_yield_dec,
        'IntradayReturn': Intraday_Return,
        'Sector' : sector}, 
    screen=Q500US()
)

Q500 = run_pipeline(pipe, '2018-01-01', '2019-01-01')
Q500.head(10)
Out[2]:
Close Forward Earning Yield Forward Earning Yield Dec IntradayReturn Open Pb Ratio Pb Ratio Dec Sector
2018-01-02 00:00:00+00:00 Equity(2 [ARNC]) 27.26 0.0550 5 -0.013206 27.62 2.226839 5 310
Equity(24 [AAPL]) 169.30 0.0671 6 -0.007206 170.52 6.422244 8 311
Equity(62 [ABT]) 57.13 0.0490 4 -0.008227 57.60 3.101151 6 206
Equity(67 [ADSK]) 104.83 0.0110 2 -0.002003 105.04 215.196374 9 311
Equity(76 [TAP]) 82.07 0.0584 6 -0.001706 82.21 1.415581 2 205
Equity(114 [ADBE]) 175.30 0.0315 3 0.000627 175.19 10.536619 8 311
Equity(122 [ADI]) 89.07 0.0572 5 -0.003256 89.36 3.229790 6 311
Equity(128 [ADM]) 40.09 0.0674 7 -0.001497 40.15 1.275740 2 205
Equity(161 [AEP]) 73.58 0.0529 5 -0.003941 73.87 2.002750 4 207
Equity(168 [AET]) 180.65 0.0558 5 -0.003930 181.36 3.775796 6 206
In [3]:
Q500_sectors = Q500.groupby(['Pb Ratio Dec', 'Forward Earning Yield Dec','Sector'])['IntradayReturn'].mean()
In [4]:
Q500_sectors.head(10)
Out[4]:
Pb Ratio Dec  Forward Earning Yield Dec  Sector
-1            1                          308      -0.003530
              3                          102       0.000631
                                         205       0.008548
              4                          205      -0.003555
              6                          206      -0.001249
              7                          206       0.002959
              8                          206       0.000555
 0            0                          309      -0.003132
              1                          101      -0.000601
                                         308      -0.000801
Name: IntradayReturn, dtype: float64
In [5]:
heatmap = np.array(Q500_sectors[:])
data = np.resize(heatmap, 100).reshape(10,10)
In [6]:
sns.heatmap(data, linewidths=0, cmap='RdYlGn', xticklabels='Pb Ratio Dec', yticklabels='Forward Earning Yield Dec', robust=True, annot=True);
In [7]:
import pandas as pd
import numpy as np
from quantopian.pipeline import Pipeline, CustomFactor
from quantopian.pipeline.data import Fundamentals
from quantopian.pipeline.factors import Latest
from quantopian.pipeline.filters import Q500US
from quantopian.research import run_pipeline
from time import strftime
from datetime import timedelta, datetime
from quantopian.pipeline.data.builtin import USEquityPricing
import seaborn as sns
import alphalens
import matplotlib.pyplot as plt
import talib as ta
from quantopian.pipeline.classifiers.morningstar import Sector
from quantopian.pipeline.data.user_5bc7b3c7439bfa004bdb1112 import merged
In [8]:
MORNINGSTAR_SECTOR_CODES = {
     -1: 'Misc',
    101: 'Basic Materials',
    102: 'Consumer Cyclical',
    103: 'Financial Services',
    104: 'Real Estate',
    205: 'Consumer Defensive',
    206: 'Healthcare',
    207: 'Utilities',
    308: 'Communication Services',
    309: 'Energy',
    310: 'Industrials',
    311: 'Technology' ,    
}
In [9]:
def auto_heatmap(factor1, factor2, factor_1_name, factor_2_name, quantile_groups = 4, start_date = '2018-01-01', end_date = '2019-01-01'):
    class PreviousClose(CustomFactor):  
        inputs = [USEquityPricing.close]  
        window_length = 1

        def compute(self, today, assets, out, close):  
            out[:] = close[0]

    class PreviousOpen(CustomFactor):  
        inputs = [USEquityPricing.open]  
        window_length = 1

        def compute(self, today, assets, out, open):  
            out[:] = open[0]

    def make_pipeline():
        # define our fundamental factor pipeline
        pipe = Pipeline()
        
        universe = Q500US()
        
        factor_1 = Latest([factor1])
        factor_2 = Latest([factor2])

        factor_1_dec = factor_1.quantiles(quantile_groups, mask=universe)
        factor_2_dec = factor_2.quantiles(quantile_groups, mask=universe)


    #     PreviousClose(window_length = 1) is the same as USEquityPricing.close.latest
        previous_close_price = PreviousClose(window_length = 2)
        close_price = USEquityPricing.close.latest
        open_price = USEquityPricing.open.latest

        Overnight_return = open_price / previous_close_price - 1
        Intraday_return = close_price / open_price - 1

        pipe = Pipeline(
            columns = {
                'open':open_price,
                'close':close_price,
                'close_previous':previous_close_price,
                'Overnight_return':Overnight_return,
                'Intraday_return':Intraday_return,
                factor_1_name:factor_1,
                factor_2_name:factor_2,
                factor_1_name+" quantile":factor_1_dec,
                factor_2_name+" quantile":factor_2_dec,
                'Sector': Sector(mask=universe),
                'first_30': merged.first_30.latest,
                'last_30': merged.last_30.latest
            },
            screen=universe
        )

        return pipe

    pipe = make_pipeline()

    results = run_pipeline(pipe, start_date, end_date).dropna()
    
    decile_means = results.groupby([factor_1_name+" quantile", factor_2_name+" quantile"])['Intraday_return', 'Overnight_return', 'first_30', 'last_30'].mean()
    decile_count = results.groupby([factor_1_name+" quantile", factor_2_name+" quantile"])['Overnight_return'].count()
    
    for ret_type in ['Intraday_return', 'Overnight_return', 'first_30', 'last_30']:
        sns.heatmap(decile_means[ret_type].unstack(), annot=True, linewidths=.5, fmt=".2%", center=0, cmap=sns.diverging_palette(20, 150, as_cmap=True), vmin=-0.005, vmax=0.005,).set_title(ret_type)
        plt.figure()
    
    sns.heatmap(decile_count.unstack(), annot=True, linewidths=.5, fmt='g', cmap="Blues").set_title('Number of Observations')
    plt.figure()
    
    decile_means_sector = results.groupby([factor_1_name+" quantile", factor_2_name+" quantile", "Sector"])['Intraday_return', 'Overnight_return', 'first_30', 'last_30'].mean()
    
    
    for ret_type in ['Intraday_return', 'Overnight_return', 'first_30', 'last_30']:
        def facet_heatmap(data, color, value_col, **kws):
            data = data.pivot(index=factor_1_name+" quantile", columns=factor_2_name+" quantile", values = value_col)
            sns.heatmap(data, annot=True, linewidths=.5, fmt=".2%", center=0, cmap=sns.diverging_palette(20, 150, as_cmap=True), vmin=-0.005, vmax=0.005, cbar = False, **kws)

        with sns.plotting_context(font_scale=5):
            g = sns.FacetGrid(decile_means_sector.reset_index(), col="Sector", col_wrap=3, size=4.5, aspect=1)

        g = g.map_dataframe(facet_heatmap, value_col = ret_type)

        g.set_titles(col_template="{col_name}", fontweight='bold', fontsize=18)
        g.fig.suptitle(ret_type + ' by sector')
        plt.figure()
        
    decile_count_sector = results.groupby([factor_1_name+" quantile", factor_2_name+" quantile", "Sector"])['Overnight_return'].count()
    
    def facet_heatmap_count(data, color, value_col, **kws):
            data = data.pivot(index=factor_1_name+" quantile", columns=factor_2_name+" quantile", values = value_col)
            sns.heatmap(data, annot=True, linewidths=.5, fmt='g', cmap="Blues", **kws)


    with sns.plotting_context(font_scale=5):
        g = sns.FacetGrid(decile_count_sector.reset_index(), col="Sector", col_wrap=3, size=4.5, aspect=1)

        g = g.map_dataframe(facet_heatmap_count, value_col = "Overnight_return")

        g.set_titles(col_template="{col_name}", fontweight='bold', fontsize=18)
        g.fig.suptitle('Number of observations by sector')
        plt.figure()
    
#     results['cum_intraday']=results.groupby(level = 1)['Intraday_return'].apply(lambda x : x.shift().fillna(0).add(1).cumprod()).values
#     results['cum_overnight']=results.groupby(level = 1)['Overnight_return'].apply(lambda x : x.shift().fillna(0).add(1).cumprod()).values
        
    return results

    
In [10]:
a = auto_heatmap(Fundamentals.market_cap, 
                 valuation_ratios.forward_earning_yield, "Pb Ratio", "Forward Earning Yield", 
                 5, '2018-01-01', '2019-01-01')
<matplotlib.figure.Figure at 0x7f1a28092950>
<matplotlib.figure.Figure at 0x7f1993123b10>
<matplotlib.figure.Figure at 0x7f199265df90>
<matplotlib.figure.Figure at 0x7f1991b99bd0>
<matplotlib.figure.Figure at 0x7f1980ec3fd0>
<matplotlib.figure.Figure at 0x7f19800df590>
In [ ]:
#In the Alphalens I am going to use Price to Book and Earnings Yield 
Price  Book: This is calculated as Price - Close (price_close_fp) divided by Book Value Per Share (bps).
Earnings Yield: This is calculated as Earnings Per Share - Fiscal Period (eps) divided by Price - Close (price_close_fp), multiplied by 100.
In [11]:
from quantopian.pipeline.data import factset

from quantopian.pipeline import Pipeline
from quantopian.research import run_pipeline
from quantopian.pipeline.filters import QTradableStocksUS

def make_pipeline():

    # Measures a company's asset growth rate.
    asset_growth = factset.Fundamentals.assets_gr_qf.latest 

    return Pipeline(
      columns={'asset_growth': asset_growth},
      screen=QTradableStocksUS() & asset_growth.notnull()
    )

factor_data = run_pipeline(pipeline=make_pipeline(), start_date='2006-1-1', end_date='2018-1-1')

# Show the first 10 rows of factor data
factor_data.head(10)
Out[11]:
asset_growth
2006-01-03 00:00:00+00:00 Equity(2 [ARNC]) 4.033057
Equity(24 [AAPL]) 43.490683
Equity(41 [ARCB]) 13.380528
Equity(60 [ABS]) -1.950620
Equity(62 [ABT]) 4.595569
Equity(64 [GOLD]) 26.090994
Equity(67 [ADSK]) 19.267794
Equity(76 [TAP]) 172.904531
Equity(85 [ACF]) 17.569197
Equity(88 [ACI]) 13.989392
In [12]:
pricing_data = get_pricing(
  symbols=factor_data.index.levels[1], # Finds all assets that appear at least once in "factor_data"  
  start_date='2006-1-1',
  end_date='2018-2-1', # must be after run_pipeline()'s end date. Explained more in lesson 4
  fields='open_price' # Generally, you should use open pricing. Explained more in lesson 4
)

# Show the first 10 rows of pricing_data
pricing_data.head(10)
Out[12]:
Equity(2 [ARNC]) Equity(24 [AAPL]) Equity(31 [ABAX]) Equity(39 [DDC]) Equity(41 [ARCB]) Equity(52 [ABM]) Equity(53 [ABMD]) Equity(60 [ABS]) Equity(62 [ABT]) Equity(64 [GOLD]) ... Equity(50633 [JAG]) Equity(50634 [JELD]) Equity(50636 [REVG]) Equity(50639 [LAUR]) Equity(50690 [CJ]) Equity(50713 [GOOS]) Equity(50716 [DXC]) Equity(50719 [MULE]) Equity(50749 [BTU]) Equity(50782 [UPL])
2006-01-03 00:00:00+00:00 73.857 9.263 15.431 32.154 37.760 14.750 9.24 21.142 13.818 24.505 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-04 00:00:00+00:00 74.531 9.614 15.788 31.796 38.524 14.750 9.42 21.358 13.638 25.071 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-05 00:00:00+00:00 74.631 9.583 16.614 32.205 38.263 14.833 9.74 21.801 13.748 25.028 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-06 00:00:00+00:00 75.655 9.636 16.576 32.504 38.801 14.968 9.74 21.801 13.873 25.637 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-09 00:00:00+00:00 75.280 9.826 16.755 32.939 38.654 15.096 9.66 21.664 14.718 26.038 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-10 00:00:00+00:00 71.761 9.765 16.464 32.146 39.235 15.089 10.00 21.752 14.684 25.541 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-11 00:00:00+00:00 73.783 10.737 16.604 32.598 38.688 15.307 10.21 21.614 14.491 25.907 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-12 00:00:00+00:00 71.960 10.879 17.017 33.536 38.003 15.019 10.61 21.496 14.376 25.158 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-13 00:00:00+00:00 71.786 10.884 16.942 34.134 38.966 14.898 10.59 22.849 14.460 25.367 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2006-01-17 00:00:00+00:00 72.185 10.975 16.604 34.979 39.131 14.906 10.17 22.829 14.230 26.090 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

10 rows × 4128 columns

In [13]:
from alphalens.utils import get_clean_factor_and_forward_returns

merged_data = get_clean_factor_and_forward_returns(
  factor=factor_data, 
  prices=pricing_data
)

# Show the first 10 rows of merged_data
merged_data.head(10)
Dropped 0.1% entries from factor data: 0.1% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
max_loss is 35.0%, not exceeded: OK!
Out[13]:
1D 5D 10D factor factor_quantile
date asset
2006-01-03 00:00:00+00:00 Equity(2 [ARNC]) 0.009126 -0.028379 -0.015544 4.033057 2
Equity(24 [AAPL]) 0.037893 0.054194 0.148872 43.490683 5
Equity(41 [ARCB]) 0.020233 0.039062 0.018618 13.380528 3
Equity(60 [ABS]) 0.010217 0.028853 0.080740 -1.950620 1
Equity(62 [ABT]) -0.013026 0.062672 0.036112 4.595569 2
Equity(64 [GOLD]) 0.023097 0.042277 0.044440 26.090994 4
Equity(67 [ADSK]) -0.000233 0.005814 -0.016512 19.267794 4
Equity(76 [TAP]) 0.002234 0.025689 -0.005816 172.904531 5
Equity(85 [ACF]) -0.001933 0.030924 0.054117 17.569197 4
Equity(88 [ACI]) 0.036398 0.027950 0.063975 13.989392 3
In [13]:
from quantopian.pipeline.data import factset

from quantopian.pipeline import Pipeline
from quantopian.research import run_pipeline
from quantopian.pipeline.factors import CustomFactor, SimpleMovingAverage
from quantopian.pipeline.filters import QTradableStocksUS
from alphalens.tears import create_information_tear_sheet
from alphalens.utils import get_clean_factor_and_forward_returns

def make_pipeline():

    # 1 year moving average of year over year net income
    net_income_moving_average = SimpleMovingAverage( 
      inputs=[factset.Fundamentals.net_inc_af], 
      window_length=252
    )

    # 1 year moving average of earnings yield
    earnings_yield_moving_average = SimpleMovingAverage( 
      inputs=[factset.Fundamentals.mkt_val], 
      window_length=252
    )

    average_earnings_yield_per_net_income = (earnings_yield_moving_average / net_income_moving_average)

    # the last quarter's net income
    net_income = factset.Fundamentals.net_inc_qf.latest 

    projected_earnings_yield = average_earnings_yield_per_net_income * net_income

    return Pipeline(
      columns={'projected_earnings_yield': projected_earnings_yield},
      screen=QTradableStocksUS() & projected_earnings_yield.notnull()
    )


factor_data = run_pipeline(make_pipeline(), '2006-1-1', '2018-1-1')
pricing_data = get_pricing(factor_data.index.levels[1], '2006-1-1', '2018-2-1', fields='open_price')
merged_data = get_clean_factor_and_forward_returns(factor_data, pricing_data)

create_information_tear_sheet(merged_data)
Dropped 0.1% entries from factor data: 0.1% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
max_loss is 35.0%, not exceeded: OK!
Information Analysis
1D 5D 10D
IC Mean 0.008 0.011 0.011
IC Std. 0.103 0.103 0.097
Risk-Adjusted IC 0.081 0.109 0.116
t-stat(IC) 4.459 5.969 6.400
p-value(IC) 0.000 0.000 0.000
IC Skew -0.048 -0.029 -0.011
IC Kurtosis -0.274 -0.394 -0.421
<matplotlib.figure.Figure at 0x7f89dbcde350>
In [17]:
def make_pipeline():

    # 1 year moving average of year over year net income
    net_income_moving_average = SimpleMovingAverage( 
        inputs=[factset.Fundamentals.net_inc_af], 
        window_length=252
    )

    # 1 year moving average of earnings yield
    earnings_yield_moving_average = SimpleMovingAverage( 
        inputs=[factset.Fundamentals.mkt_val], 
        window_length=252
    )

    average_earnings_yield_per_net_income = (earnings_yield_moving_average / net_income_moving_average)

    net_income = factset.Fundamentals.net_inc_qf.latest # The last quarter's net income

    projected_earnings_yield = average_earnings_yield_per_net_income * net_income

    price_to_book = factset.Fundamentals.pbk_qf.latest # The alpha factor we are adding

    factor_to_analyze = projected_earnings_yield.zscore() + price_to_book.zscore()

    return Pipeline(
        columns={'factor_to_analyze': factor_to_analyze},
        screen=QTradableStocksUS() & factor_to_analyze.notnull()
    )



factor_data = run_pipeline(make_pipeline(), '2006-1-1', '2018-1-1')
pricing_data = get_pricing(factor_data.index.levels[1], '2006-1-1', '2018-1-1', fields='open_price')
new_merged_data = get_clean_factor_and_forward_returns(factor_data, pricing_data)

create_information_tear_sheet(new_merged_data)
Dropped 0.7% entries from factor data: 0.7% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
max_loss is 35.0%, not exceeded: OK!
Information Analysis
1D 5D 10D
IC Mean 0.004 0.007 0.007
IC Std. 0.101 0.104 0.100
Risk-Adjusted IC 0.043 0.066 0.066
t-stat(IC) 1.856 2.873 2.855
p-value(IC) 0.064 0.004 0.004
IC Skew -0.017 -0.068 -0.052
IC Kurtosis -0.382 -0.522 -0.473
<matplotlib.figure.Figure at 0x7f197464b950>
In [23]:
from alphalens.tears import create_returns_tear_sheet

create_returns_tear_sheet(merged_data)
Returns Analysis
1D 5D 10D
Ann. alpha NaN NaN NaN
beta NaN NaN NaN
Mean Period Wise Return Top Quantile (bps) 0.021 -0.188 -0.282
Mean Period Wise Return Bottom Quantile (bps) -0.854 -0.546 -0.427
Mean Period Wise Spread (bps) 0.875 0.364 0.157
<matplotlib.figure.Figure at 0x7f197cad0110>
In [14]:
merged_data
Out[14]:
1D 5D 10D factor factor_quantile
date asset
2006-01-03 00:00:00+00:00 Equity(2 [ARNC]) 0.009126 -0.028379 -0.015544 5.145763e+09 5
Equity(24 [AAPL]) 0.037893 0.054194 0.148872 2.713150e+10 5
Equity(41 [ARCB]) 0.020233 0.039062 0.018618 5.060975e+08 3
Equity(60 [ABS]) 0.010217 0.028853 0.080740 1.375475e+09 4
Equity(62 [ABT]) -0.013026 0.062672 0.036112 1.537660e+10 5
Equity(64 [GOLD]) 0.023097 0.042277 0.044440 6.237854e+09 5
Equity(67 [ADSK]) -0.000233 0.005814 -0.016512 3.414139e+09 5
Equity(85 [ACF]) -0.001933 0.030924 0.054117 7.497746e+08 3
Equity(88 [ACI]) 0.036398 0.027950 0.063975 5.342042e+08 3
Equity(110 [RAMP]) 0.019144 0.044833 -0.000897 2.038662e+08 2
Equity(114 [ADBE]) 0.038926 0.025235 0.046980 4.933690e+09 5
Equity(115 [ADCT]) 0.016079 0.059848 0.051809 6.763991e+07 1
Equity(122 [ADI]) 0.011630 0.073899 0.037636 1.684483e+09 4
Equity(128 [ADM]) -0.005266 0.068662 0.066628 3.660942e+09 5
Equity(146 [AD]) 0.015820 0.064346 0.041487 1.935393e+08 2
Equity(154 [AEM]) 0.092040 0.091040 0.063656 5.171162e+07 1
Equity(161 [AEP]) -0.003258 -0.007264 0.006164 4.574390e+09 5
Equity(166 [AES]) 0.027067 0.040232 0.029568 9.504112e+09 5
Equity(168 [AET]) -0.004562 -0.018552 -0.035824 6.913597e+09 5
Equity(185 [AFL]) 0.001088 0.052320 0.036228 7.472521e+09 5
Equity(197 [AGCO]) 0.002996 -0.025028 0.014917 3.059794e+08 2
Equity(198 [AGE]) -0.028663 -0.002130 -0.025903 9.748068e+08 4
Equity(205 [AGN]) 0.026288 0.042246 0.076899 4.302439e+09 5
Equity(209 [AM]) -0.004076 -0.003616 -0.031801 3.015596e+08 2
Equity(247 [AIN]) 0.026523 0.057718 -0.069311 1.911918e+09 4
Equity(253 [AIR]) 0.004112 0.062575 0.021410 3.042112e+08 2
Equity(266 [AJG]) 0.007078 0.008053 -0.005181 7.347926e+08 3
Equity(272 [AL]) 0.004903 0.012733 0.039376 3.916142e+09 5
Equity(289 [MATX]) 0.001655 -0.011588 -0.017115 7.180076e+08 3
Equity(300 [ALK]) -0.009235 -0.003670 -0.161378 -4.887357e+09 1
... ... ... ... ... ... ...
2018-01-02 00:00:00+00:00 Equity(50348 [SD]) -0.000943 -0.006598 -0.046654 -4.723776e+06 1
Equity(50350 [COUP]) 0.012650 0.048071 0.101202 4.591090e+08 2
Equity(50357 [ARCH]) 0.020887 0.015665 0.015772 9.267442e+07 1
Equity(50361 [ADSW]) -0.021285 -0.007930 0.005843 -2.357679e+08 1
Equity(50366 [CWH]) 0.012395 -0.033643 -0.036521 1.039256e+10 5
Equity(50368 [XOG]) 0.014563 -0.007628 -0.045770 1.890418e+08 2
Equity(50376 [CDEV]) 0.009023 0.015038 0.004010 -2.675109e+08 1
Equity(50382 [FTS]) -0.005187 -0.010647 -0.041223 6.577156e+09 5
Equity(50390 [ADNT]) 0.006837 0.045472 -0.059172 2.573881e+09 4
Equity(50392 [YUMC]) 0.034878 0.070254 0.151968 5.245737e+09 5
Equity(50398 [FRTA]) 0.043828 0.021467 -0.128801 8.909188e+08 3
Equity(50399 [IRTC]) 0.020741 0.065768 0.095905 2.853802e+08 2
Equity(50403 [QCP]) -0.005789 -0.000724 -0.033285 -6.710516e+08 1
Equity(50417 [QTNA]) -0.001638 0.099099 0.128583 -9.374586e+08 1
Equity(50418 [BL]) 0.014921 0.043849 0.066382 5.539351e+08 3
Equity(50424 [GOLF]) -0.019811 -0.001887 -0.009906 2.869240e+08 2
Equity(50428 [AA]) 0.015908 0.017388 0.036441 -1.848567e+09 1
Equity(50430 [LW]) -0.015771 0.035396 0.039818 1.556416e+09 4
Equity(50444 [LEXE_A]) 0.027484 0.068259 0.092588 1.680436e+07 1
Equity(50499 [EVHC]) 0.019387 0.014468 0.013889 -1.236932e+10 1
Equity(50509 [ICHR]) 0.042084 0.060120 0.093387 3.346998e+08 2
Equity(50518 [ATH]) -0.024694 -0.022588 -0.014740 3.535906e+09 4
Equity(50526 [LGF_A]) -0.007519 -0.042406 -0.022286 6.224731e+09 5
Equity(50533 [CNDT]) 0.018564 0.014851 0.039604 5.654236e+07 1
Equity(50534 [HGV]) -0.007160 0.007399 -0.017900 8.208401e+08 3
Equity(50535 [PK]) -0.001061 -0.005199 0.011778 4.799613e+09 5
Equity(50537 [WRD]) -0.003250 0.023294 0.028711 1.326606e+09 4
Equity(50606 [VREX]) 0.009434 -0.003972 0.006703 3.688743e+08 2
Equity(50636 [REVG]) 0.007648 0.008876 -0.030069 1.161224e+09 3
Equity(50713 [GOOS]) 0.005033 0.050016 0.001258 3.604773e+09 4

5711267 rows × 5 columns

In [16]:
import matplotlib.pyplot as plt
companies_per_day = merged_data.groupby(pd.Grouper(freq='D', level = 0)).count()
companies_per_day = companies_per_day[(companies_per_day.T != 0).any()]
plt.plot(companies_per_day['factor'])
plt.ylabel('Number of companies per day')
plt.show()
In [21]:
import seaborn as sns
sns.violinplot(x="factor_quantile", y="1D",
               split=True, inner="quart",
               data=merged_data)
Out[21]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f89b3aa8990>
In [22]:
merged_data
Out[22]:
1D 5D 10D factor factor_quantile
date asset
2006-01-03 00:00:00+00:00 Equity(2 [ARNC]) 0.009126 -0.028379 -0.015544 5.145763e+09 5
Equity(24 [AAPL]) 0.037893 0.054194 0.148872 2.713150e+10 5
Equity(41 [ARCB]) 0.020233 0.039062 0.018618 5.060975e+08 3
Equity(60 [ABS]) 0.010217 0.028853 0.080740 1.375475e+09 4
Equity(62 [ABT]) -0.013026 0.062672 0.036112 1.537660e+10 5
Equity(64 [GOLD]) 0.023097 0.042277 0.044440 6.237854e+09 5
Equity(67 [ADSK]) -0.000233 0.005814 -0.016512 3.414139e+09 5
Equity(85 [ACF]) -0.001933 0.030924 0.054117 7.497746e+08 3
Equity(88 [ACI]) 0.036398 0.027950 0.063975 5.342042e+08 3
Equity(110 [RAMP]) 0.019144 0.044833 -0.000897 2.038662e+08 2
Equity(114 [ADBE]) 0.038926 0.025235 0.046980 4.933690e+09 5
Equity(115 [ADCT]) 0.016079 0.059848 0.051809 6.763991e+07 1
Equity(122 [ADI]) 0.011630 0.073899 0.037636 1.684483e+09 4
Equity(128 [ADM]) -0.005266 0.068662 0.066628 3.660942e+09 5
Equity(146 [AD]) 0.015820 0.064346 0.041487 1.935393e+08 2
Equity(154 [AEM]) 0.092040 0.091040 0.063656 5.171162e+07 1
Equity(161 [AEP]) -0.003258 -0.007264 0.006164 4.574390e+09 5
Equity(166 [AES]) 0.027067 0.040232 0.029568 9.504112e+09 5
Equity(168 [AET]) -0.004562 -0.018552 -0.035824 6.913597e+09 5
Equity(185 [AFL]) 0.001088 0.052320 0.036228 7.472521e+09 5
Equity(197 [AGCO]) 0.002996 -0.025028 0.014917 3.059794e+08 2
Equity(198 [AGE]) -0.028663 -0.002130 -0.025903 9.748068e+08 4
Equity(205 [AGN]) 0.026288 0.042246 0.076899 4.302439e+09 5
Equity(209 [AM]) -0.004076 -0.003616 -0.031801 3.015596e+08 2
Equity(247 [AIN]) 0.026523 0.057718 -0.069311 1.911918e+09 4
Equity(253 [AIR]) 0.004112 0.062575 0.021410 3.042112e+08 2
Equity(266 [AJG]) 0.007078 0.008053 -0.005181 7.347926e+08 3
Equity(272 [AL]) 0.004903 0.012733 0.039376 3.916142e+09 5
Equity(289 [MATX]) 0.001655 -0.011588 -0.017115 7.180076e+08 3
Equity(300 [ALK]) -0.009235 -0.003670 -0.161378 -4.887357e+09 1
... ... ... ... ... ... ...
2018-01-02 00:00:00+00:00 Equity(50348 [SD]) -0.000943 -0.006598 -0.046654 -4.723776e+06 1
Equity(50350 [COUP]) 0.012650 0.048071 0.101202 4.591090e+08 2
Equity(50357 [ARCH]) 0.020887 0.015665 0.015772 9.267442e+07 1
Equity(50361 [ADSW]) -0.021285 -0.007930 0.005843 -2.357679e+08 1
Equity(50366 [CWH]) 0.012395 -0.033643 -0.036521 1.039256e+10 5
Equity(50368 [XOG]) 0.014563 -0.007628 -0.045770 1.890418e+08 2
Equity(50376 [CDEV]) 0.009023 0.015038 0.004010 -2.675109e+08 1
Equity(50382 [FTS]) -0.005187 -0.010647 -0.041223 6.577156e+09 5
Equity(50390 [ADNT]) 0.006837 0.045472 -0.059172 2.573881e+09 4
Equity(50392 [YUMC]) 0.034878 0.070254 0.151968 5.245737e+09 5
Equity(50398 [FRTA]) 0.043828 0.021467 -0.128801 8.909188e+08 3
Equity(50399 [IRTC]) 0.020741 0.065768 0.095905 2.853802e+08 2
Equity(50403 [QCP]) -0.005789 -0.000724 -0.033285 -6.710516e+08 1
Equity(50417 [QTNA]) -0.001638 0.099099 0.128583 -9.374586e+08 1
Equity(50418 [BL]) 0.014921 0.043849 0.066382 5.539351e+08 3
Equity(50424 [GOLF]) -0.019811 -0.001887 -0.009906 2.869240e+08 2
Equity(50428 [AA]) 0.015908 0.017388 0.036441 -1.848567e+09 1
Equity(50430 [LW]) -0.015771 0.035396 0.039818 1.556416e+09 4
Equity(50444 [LEXE_A]) 0.027484 0.068259 0.092588 1.680436e+07 1
Equity(50499 [EVHC]) 0.019387 0.014468 0.013889 -1.236932e+10 1
Equity(50509 [ICHR]) 0.042084 0.060120 0.093387 3.346998e+08 2
Equity(50518 [ATH]) -0.024694 -0.022588 -0.014740 3.535906e+09 4
Equity(50526 [LGF_A]) -0.007519 -0.042406 -0.022286 6.224731e+09 5
Equity(50533 [CNDT]) 0.018564 0.014851 0.039604 5.654236e+07 1
Equity(50534 [HGV]) -0.007160 0.007399 -0.017900 8.208401e+08 3
Equity(50535 [PK]) -0.001061 -0.005199 0.011778 4.799613e+09 5
Equity(50537 [WRD]) -0.003250 0.023294 0.028711 1.326606e+09 4
Equity(50606 [VREX]) 0.009434 -0.003972 0.006703 3.688743e+08 2
Equity(50636 [REVG]) 0.007648 0.008876 -0.030069 1.161224e+09 3
Equity(50713 [GOOS]) 0.005033 0.050016 0.001258 3.604773e+09 4

5711267 rows × 5 columns

In [23]:
from alphalens.performance import create_pyfolio_input

import alphalens
import pyfolio

pf_returns, pf_positions, pf_benchmark = \
    create_pyfolio_input(merged_data,
                         period='1D',
                         capital=1000000,
                         long_short=True,
                         group_neutral=False,
                         equal_weight=False, # Equal weight vs weight based on alpha factor
                         quantiles=[3,4], # Choose the "best" quantiles to trade based on your analysis above
                         groups=None,
                         benchmark_period='1D') 
In [25]:
from pyfolio.tears import create_full_tear_sheet

create_full_tear_sheet(pf_returns,
                       positions=pf_positions,
                       benchmark_rets=pf_benchmark,
                       round_trips=True)
Start date2006-01-04
End date2018-01-03
Total months208
Backtest
Annual return 0.2%
Cumulative returns 3.5%
Annual volatility 2.2%
Sharpe ratio 0.10
Calmar ratio 0.02
Stability 0.23
Max drawdown -8.2%
Omega ratio 1.02
Sortino ratio 0.14
Skew -1.18
Kurtosis 19.97
Tail ratio 1.02
Daily value at risk -0.3%
Gross leverage 0.97
Alpha 0.01
Beta -0.04
Worst drawdown periods Net drawdown in % Peak date Valley date Recovery date Duration
0 8.18 2008-05-20 2008-10-13 2016-01-05 1991
1 3.68 2016-05-18 2017-01-05 2017-11-15 391
2 2.56 2006-01-18 2007-08-17 2007-12-04 490
3 1.38 2008-03-09 2008-03-27 2008-05-19 51
4 1.30 2007-12-17 2007-12-27 2008-01-10 19
Stress Events mean min max
Lehmann -0.06% -1.27% 0.55%
US downgrade/European Debt Crisis 0.03% -0.24% 0.49%
Fukushima -0.00% -0.21% 0.19%
EZB IR Event 0.01% -0.14% 0.12%
Aug07 -0.03% -0.81% 0.61%
Mar08 -0.03% -0.51% 0.40%
Sept08 -0.09% -1.27% 0.55%
2009Q1 0.05% -0.60% 0.66%
2009Q2 0.00% -0.44% 0.57%
Flash Crash 0.05% 0.00% 0.10%
Apr14 0.02% -0.34% 0.47%
Oct14 -0.05% -0.55% 0.57%
Fall2015 0.01% -0.68% 0.32%
Low Volatility Bull Market -0.00% -0.56% 0.49%
GFC Crash -0.00% -2.23% 0.89%
Recovery 0.00% -0.62% 0.53%
New Normal 0.00% -0.87% 0.57%
Top 10 long positions of all time max
CCJ 0.54%
FMC 0.54%
VAR 0.54%
THOR 0.54%
ADI 0.54%
SHW 0.54%
IGT 0.53%
JOY 0.53%
OSTK 0.53%
FTO 0.53%
Top 10 short positions of all time max
DST -0.24%
HITT -0.24%
WRB -0.24%
ITGR -0.24%
TBL -0.24%
GBCI -0.24%
ABM -0.24%
SXE -0.24%
VARI -0.24%
FRED -0.24%
Top 10 positions of all time max
CCJ 0.54%
FMC 0.54%
VAR 0.54%
THOR 0.54%
ADI 0.54%
SHW 0.54%
IGT 0.53%
JOY 0.53%
OSTK 0.53%
FTO 0.53%
All positions ever held max
CCJ 0.54%
FMC 0.54%
VAR 0.54%
THOR 0.54%
ADI 0.54%
SHW 0.54%
IGT 0.53%
JOY 0.53%
OSTK 0.53%
FTO 0.53%
ECLP 0.53%
CXG 0.53%
MEE 0.53%
SNDK 0.53%
VFC 0.53%
WEC 0.53%
DOV 0.53%
APH 0.53%
PX 0.52%
MU 0.52%
GTIV 0.52%
ADSK 0.52%
FTI 0.52%
BF_B 0.52%
FMD 0.52%
NBR 0.52%
BSX 0.52%
DCT 0.52%
VIA_B 0.52%
MIR 0.52%
ED 0.51%
SLM 0.51%
DF 0.51%
ALTR 0.51%
LH 0.51%
COL 0.51%
CAM 0.51%
AIZ 0.51%
CSC 0.51%
BLK 0.51%
UPL 0.51%
OGE 0.51%
URS 0.51%
HP 0.51%
CRI 0.51%
ES 0.51%
WAT 0.51%
VTR 0.51%
ACF 0.51%
SOHU 0.51%
CNH 0.51%
KGC 0.51%
RHI 0.51%
BAM 0.51%
FRX 0.51%
SJR 0.51%
ETN 0.51%
FLIR 0.51%
NYCB 0.51%
ROST 0.51%
ONXX 0.51%
MTB 0.51%
LLL 0.51%
WMGI 0.51%
GR 0.51%
CME 0.51%
BBBY 0.51%
BKNG 0.51%
GWW 0.51%
NDN 0.51%
PBI 0.51%
FDX 0.51%
MKL 0.51%
LVS 0.51%
BRL 0.51%
CR 0.51%
TECK 0.51%
USM 0.51%
DTE 0.51%
ORI 0.51%
VMW 0.51%
TAP 0.51%
BG 0.51%
RAMP 0.51%
BCE 0.51%
DLR 0.50%
MUR 0.50%
F 0.50%
HUM 0.50%
AGP 0.50%
PNM 0.50%
STR 0.50%
DLB 0.50%
HBAN 0.50%
FDO 0.50%
AGU 0.50%
PNY 0.50%
BCR 0.50%
PGN 0.50%
EWBC 0.50%
SCG 0.50%
GTE 0.50%
UNT 0.50%
FE 0.50%
MTX 0.50%
VRSK 0.50%
CINF 0.50%
HTE 0.50%
MGM 0.50%
RES 0.50%
ACI 0.50%
TQNT 0.50%
TOL 0.50%
ECL 0.50%
PGR 0.50%
HSIC 0.50%
KWK 0.50%
AZO 0.50%
ABC 0.50%
SVU 0.50%
BPO 0.50%
AAP 0.50%
SE 0.50%
LINE 0.50%
BAP 0.50%
MTZ 0.50%
LLTC 0.50%
SIAL 0.50%
DISC_A 0.50%
OKE 0.50%
PAYX 0.50%
AEP 0.50%
IM 0.50%
MBI 0.50%
AGO 0.50%
ARCC 0.50%
UNM 0.50%
CBE 0.50%
AMAT 0.50%
OMC 0.50%
FAST 0.50%
JBL 0.50%
RX 0.50%
MHK 0.50%
TCO 0.50%
SVM 0.50%
CM 0.50%
WELL 0.50%
NXY 0.50%
GNA 0.50%
AUY 0.50%
RRR 0.50%
LAMR 0.50%
PFG 0.50%
CIR 0.50%
CNK 0.50%
RAH 0.50%
FCE_A 0.50%
HBI 0.50%
BBBB 0.50%
FCS 0.50%
ESI 0.50%
HRS 0.50%
JEF 0.50%
WFM 0.50%
GHC 0.50%
AVB 0.50%
UTEK 0.50%
TER 0.50%
ANDV 0.50%
COO 0.49%
SLXP 0.49%
SFNT 0.49%
EW 0.49%
CETV 0.49%
MAN 0.49%
MDRX 0.49%
HRL 0.49%
UDR 0.49%
TFX 0.49%
ICO 0.49%
ILMN 0.49%
VNO 0.49%
ON 0.49%
CNL 0.49%
PDCE 0.49%
KMX 0.49%
XLNX 0.49%
PHH 0.49%
IDIX 0.49%
FUL 0.49%
PNW 0.49%
IPG 0.49%
DVA 0.49%
ATO 0.49%
AVP 0.49%
HCBK 0.49%
HOS 0.49%
SPXC 0.49%
PRE 0.49%
BKH 0.49%
ATGE 0.49%
GSIC 0.49%
OCN 0.49%
THG 0.49%
IOC 0.49%
QRTE_A 0.49%
TPR 0.49%
NFG 0.49%
SPGI 0.49%
ENH 0.49%
PRX 0.49%
SJM 0.49%
DNB 0.49%
CHKP 0.49%
PDLI 0.49%
OCR 0.49%
ES 0.49%
EXPD 0.49%
HRI 0.49%
RIG 0.49%
RSG 0.49%
CGNX 0.49%
NAL 0.49%
FFIV 0.49%
NE 0.49%
SFLY 0.49%
PENN 0.49%
CTCM 0.49%
GPN 0.49%
HL 0.49%
SLAB 0.49%
CI 0.49%
AW 0.49%
WRB 0.49%
CXO 0.49%
AMG 0.49%
LNC 0.49%
HGSI 0.49%
THO 0.49%
BRCD 0.49%
ASO 0.49%
BBY 0.49%
CYBX 0.49%
RPM 0.49%
NWL 0.49%
CRM 0.49%
AVY 0.49%
VRTX 0.49%
LZ 0.49%
VR 0.49%
CERN 0.49%
TRW 0.49%
BEAV 0.49%
DLTR 0.49%
PSA 0.49%
CEPH 0.49%
PEG 0.49%
FNF 0.49%
ZBRA 0.49%
CBT 0.49%
TTWO 0.49%
VCI 0.49%
PXD 0.49%
CRK 0.49%
WLK 0.49%
CHRW 0.49%
TFSL 0.49%
ELY 0.49%
GENZ 0.49%
BCSI 0.49%
NLY 0.49%
CTB 0.49%
BTU 0.49%
DRC 0.49%
LB 0.49%
IAG 0.49%
WTI 0.49%
AMSC 0.49%
JBLU 0.49%
CCK 0.49%
MDC 0.49%
RE 0.49%
WBC 0.49%
NUE 0.49%
DAN 0.49%
TLEO 0.49%
CNS 0.49%
COLB 0.48%
AGCO 0.48%
BOBE 0.48%
EQT 0.48%
SMTC 0.48%
FISV 0.48%
Q 0.48%
LWSN 0.48%
ALK 0.48%
BYD 0.48%
SMSC 0.48%
ANH 0.48%
RTN 0.48%
POWI 0.48%
NDAQ 0.48%
VPHM 0.48%
ITGR 0.48%
ACS 0.48%
APD 0.48%
KSU 0.48%
AFG 0.48%
REG 0.48%
AMTD 0.48%
AAI 0.48%
CVG 0.48%
WLT 0.48%
KBR 0.48%
MDCO 0.48%
SRE 0.48%
CNX 0.48%
TTI 0.48%
SGMS 0.48%
ARST 0.48%
TRN 0.48%
LPT 0.48%
WCG 0.48%
ENLC 0.48%
XPER 0.48%
CIM 0.48%
MDP 0.48%
MRX 0.48%
CMA 0.48%
MATX 0.48%
ELX 0.48%
ALD 0.48%
KDP 0.48%
SVVS 0.48%
CTL 0.48%
STZ 0.48%
CSE 0.48%
HIW 0.48%
INTU 0.48%
HST 0.48%
NATI 0.48%
MGA 0.48%
ASH 0.48%
TK 0.48%
MAT 0.48%
TKLC 0.48%
BK 0.48%
CAH 0.48%
STLD 0.48%
IRF 0.48%
FIS 0.48%
CF 0.48%
BKS 0.48%
NG 0.48%
GTU 0.48%
TIN 0.48%
SFY 0.48%
ACIW 0.48%
AN 0.48%
SWY 0.48%
AXS 0.48%
SLH 0.48%
CYH 0.48%
MDU 0.48%
DAL 0.48%
CTXS 0.48%
WPM 0.48%
DJ 0.48%
WYNN 0.48%
HELE 0.48%
JWN 0.48%
CKR 0.48%
NST 0.48%
ETH 0.48%
LEAP 0.48%
BHI 0.48%
PLD 0.48%
ZION 0.48%
TDW 0.48%
IVZ 0.48%
BXP 0.48%
HLIT 0.48%
EOG 0.48%
RT 0.48%
FINL 0.48%
LAZ 0.48%
SRCL 0.48%
MCHP 0.48%
SRDX 0.48%
HNT 0.48%
WTM 0.47%
NR 0.47%
AEM 0.47%
QGEN 0.47%
IMAX 0.47%
NAV 0.47%
FEIC 0.47%
ICE 0.47%
CMS 0.47%
THI 0.47%
CATY 0.47%
KSS 0.47%
PLLL 0.47%
ATML 0.47%
EQY 0.47%
MWV 0.47%
MRH 0.47%
JEC 0.47%
SBIB 0.47%
INFN 0.47%
NBIX 0.47%
CLW 0.47%
DKS 0.47%
POM 0.47%
FOR 0.47%
PDE 0.47%
KEY 0.47%
RDEN 0.47%
RYN 0.47%
ETFC 0.47%
RKT 0.47%
STEC 0.47%
MYGN 0.47%
BBT 0.47%
SAF 0.47%
SPN 0.47%
CWEI 0.47%
UFPI 0.47%
CLX 0.47%
CVH 0.47%
FLR 0.47%
ARRS 0.47%
CKH 0.47%
HAIN 0.47%
HSH 0.47%
Y 0.47%
SII 0.47%
CBI 0.47%
MLI 0.47%
EPR 0.47%
SMA 0.47%
X 0.47%
NSR 0.47%
WYND 0.47%
FL 0.47%
RTI 0.47%
IPXL 0.47%
CP 0.47%
EEFT 0.47%
MFE 0.47%
OUTR 0.47%
SSW 0.47%
CKP 0.47%
LEG 0.47%
PICO 0.47%
PTV 0.47%
TNS 0.47%
PLT 0.47%
BR 0.47%
KIM 0.47%
CFN 0.47%
AMMD 0.47%
CCL 0.47%
SMOD 0.47%
GLBL 0.47%
BEE 0.47%
CHS 0.47%
TIF 0.47%
MFA 0.47%
GPI 0.47%
NVR 0.47%
AMKR 0.47%
OSUR 0.47%
LMNX 0.47%
HUN 0.47%
MCO 0.47%
UNS 0.47%
FHN 0.47%
RRC 0.47%
TRAK 0.47%
WBMD 0.47%
CPT 0.47%
UTIW 0.47%
TWTC 0.47%
CA 0.47%
LO 0.47%
ME 0.46%
SYMC 0.46%
CRUS 0.46%
WL 0.46%
FR 0.46%
SUNE 0.46%
ACL 0.46%
PTEN 0.46%
RFMD 0.46%
ROK 0.46%
SBAC 0.46%
MMC 0.46%
PCG 0.46%
XEL 0.46%
TBI 0.46%
HEW 0.46%
DGX 0.46%
ARNC 0.46%
IP 0.46%
PIR 0.46%
APOL 0.46%
IN 0.46%
THE 0.46%
ACGL 0.46%
HAR 0.46%
DEI 0.46%
MCY 0.46%
CAL 0.46%
RRD 0.46%
HOLX 0.46%
CHD 0.46%
EGO 0.46%
AYE 0.46%
DRI 0.46%
CLWR 0.46%
AINV 0.46%
UB 0.46%
FULT 0.46%
CNA 0.46%
CPTS 0.46%
NEE 0.46%
UST 0.46%
VRSN 0.46%
CVC 0.46%
DNR 0.46%
XMSR 0.46%
TSN 0.46%
TXI 0.46%
NTAP 0.46%
ECA 0.46%
PETM 0.46%
DNDN_Q 0.46%
DFT 0.46%
KBH 0.46%
PL 0.46%
CTV 0.46%
PLL 0.46%
PNFP 0.46%
HLX 0.46%
URBN 0.46%
MWW 0.46%
LSI 0.46%
BWA 0.46%
LAF 0.46%
VRX 0.46%
AXE 0.46%
RDWR 0.46%
IRM 0.46%
SLG 0.46%
LCC 0.46%
SCHN 0.46%
NUVA 0.46%
ETR 0.46%
SKT 0.46%
PAAS 0.46%
IONS 0.46%
UVN 0.46%
ARW 0.46%
DRH 0.46%
UGI 0.46%
CEG 0.46%
COP 0.46%
GXP 0.46%
SNPS 0.46%
SAPE 0.46%
LRCX 0.46%
OI 0.46%
PRGO 0.46%
PNR 0.46%
WTNY 0.46%
RMBS 0.46%
KLIC 0.46%
MEOH 0.46%
GEC 0.46%
PLCE 0.46%
WDC 0.46%
FSLR 0.46%
PBCT 0.46%
LOGI 0.46%
ISIL 0.46%
AHT 0.46%
CBL 0.46%
NVLS 0.45%
VRGY 0.45%
NTCT 0.45%
AVX 0.45%
CPS 0.45%
ATLS 0.45%
WLL 0.45%
DOX 0.45%
MOLX 0.45%
CPX 0.45%
EPC 0.45%
THC 0.45%
FORM 0.45%
GME 0.45%
ODP 0.45%
BDK 0.45%
UAPH 0.45%
RBBN 0.45%
WHR 0.45%
NFS 0.45%
CMG 0.45%
APC 0.45%
PWR 0.45%
BEAS 0.45%
MXIM 0.45%
AGN 0.45%
LUV 0.45%
COG 0.45%
NLC 0.45%
AIV 0.45%
MDR 0.45%
BHE 0.45%
TIVO 0.45%
PXP 0.45%
FLEX 0.45%
CCI 0.45%
MIFI 0.45%
RNOW 0.45%
MPWR 0.45%
CMI 0.45%
GIII 0.45%
EL 0.45%
MRVL 0.45%
KMG 0.45%
SA 0.45%
PBY 0.45%
SHO 0.45%
PBG 0.45%
KMI 0.45%
TEX 0.45%
TGNA 0.45%
ORLY 0.45%
TRH 0.45%
HTH 0.45%
IPCR 0.45%
PKG 0.45%
GAS 0.45%
ROCK 0.45%
VSEA 0.45%
CLS 0.45%
MTW 0.45%
FIRE 0.45%
OATS 0.45%
NUAN 0.45%
BMET 0.45%
AAXN 0.45%
LII 0.45%
COHR 0.45%
DIGE 0.45%
SIG 0.45%
VMC 0.45%
XRAY 0.45%
RDC 0.45%
TILE 0.45%
MCHX 0.45%
FTR 0.45%
CNMD 0.45%
CNQ 0.45%
IDCC 0.45%
CZZ 0.45%
CUZ 0.45%
BKCC 0.45%
CAG 0.45%
RDN 0.45%
BKD 0.45%
AWK 0.45%
TLAB 0.45%
KRO 0.45%
DRYS 0.45%
SWN 0.45%
ACC 0.45%
WSM 0.45%
AKAM 0.45%
NTRS 0.45%
PPS 0.45%
A 0.45%
ARIA 0.45%
ANSS 0.45%
PH 0.45%
GPC 0.45%
CATM 0.45%
ALSK 0.45%
SSI 0.44%
LNG 0.44%
LIFE 0.44%
GLNG 0.44%
PVAC 0.44%
MSO 0.44%
MDAS 0.44%
RVBD 0.44%
WEN 0.44%
NCR 0.44%
NYX 0.44%
SEE 0.44%
GDI 0.44%
CVA 0.44%
GRA 0.44%
ALL 0.44%
ENZN 0.44%
MDG 0.44%
HSP 0.44%
PHM 0.44%
HNZ 0.44%
ALGN 0.44%
HOT 0.44%
HOG 0.44%
AVT 0.44%
TNB 0.44%
ZRAN 0.44%
PCL 0.44%
ARB 0.44%
COMS 0.44%
DO 0.44%
NTRI 0.44%
LEN 0.44%
WOR 0.44%
EA 0.44%
NM 0.44%
ATI 0.44%
RYL 0.44%
ALR 0.44%
BID 0.44%
ADVS 0.44%
GSL 0.44%
ASN 0.44%
KLAC 0.44%
ACLS 0.44%
ISLE 0.44%
WNR 0.44%
HCA 0.44%
BOL 0.44%
PALM 0.44%
ARBA 0.44%
SKS 0.44%
KG 0.44%
KMR 0.44%
FCL 0.44%
GMST 0.44%
NDSN 0.44%
BDC 0.44%
FDG 0.44%
GRMN 0.44%
BRE 0.44%
FLS 0.44%
SMG 0.44%
HPT 0.44%
SUG 0.44%
CLP 0.44%
EQR 0.44%
CY 0.44%
WG 0.44%
CROX 0.44%
WY 0.44%
STJ 0.44%
FCH 0.44%
MYL 0.44%
SATS 0.44%
RBY 0.44%
CKFR 0.44%
KRC 0.44%
HSY 0.44%
MATR 0.44%
HNI 0.44%
UCO 0.44%
LPX 0.44%
ATYT 0.44%
AHL 0.44%
AIG 0.44%
GSS 0.44%
EFII 0.44%
EQIX 0.44%
AT 0.44%
ULTI 0.44%
TFSM 0.44%
NEWP 0.44%
NJR 0.44%
EP 0.44%
NPO 0.44%
ROP 0.43%
LHO 0.43%
VOLC 0.43%
TEN 0.43%
TC 0.43%
LYV 0.43%
LNT 0.43%
ANDW 0.43%
WLTW 0.43%
SFD 0.43%
LFB 0.43%
ROC 0.43%
SUN 0.43%
WU 0.43%
KOG 0.43%
AKS 0.43%
AEE 0.43%
AVGO 0.43%
LDOS 0.43%
LYO 0.43%
SIGM 0.43%
CIE 0.43%
PNK 0.43%
RCNI 0.43%
BLL 0.43%
GLG 0.43%
ATVI 0.43%
OFIX 0.43%
HPR 0.43%
TDG 0.43%
ARE 0.43%
JAH 0.43%
MAS 0.43%
NYT 0.43%
CYT 0.43%
TRQ 0.43%
PPL 0.43%
CREE 0.43%
CLNE 0.43%
AMP 0.43%
ARO 0.43%
SPR 0.43%
RHP 0.43%
YNDX 0.43%
HSC 0.43%
TJX 0.43%
ARS 0.43%
EQ 0.43%
GNW 0.43%
STX 0.43%
OSK 0.43%
CAL 0.43%
PDS 0.43%
FRG 0.43%
IDTI 0.43%
ORH 0.43%
RF 0.43%
HCP 0.43%
GTW 0.43%
SO 0.43%
LZB 0.43%
INAP 0.43%
OMX 0.43%
NXPI 0.43%
PKI 0.43%
PHRM 0.43%
NPBC 0.43%
EME 0.43%
BORL 0.43%
CCC 0.43%
SCOR 0.43%
RNR 0.43%
HAS 0.43%
NI 0.43%
IRDM 0.43%
KFY 0.43%
LPLA 0.43%
NETL 0.43%
MIL 0.43%
K 0.43%
DWA 0.43%
CENX 0.43%
AES 0.43%
PRGN 0.43%
ITMN 0.43%
REGN 0.43%
AXL 0.43%
SPLS 0.43%
CIEN 0.43%
OVEN 0.43%
PSLV 0.43%
DISH 0.43%
ILSE 0.43%
IVAC 0.43%
FCF 0.43%
UVV 0.43%
HK 0.43%
DDC 0.43%
FRO 0.43%
CTAS 0.43%
TEL 0.43%
MSCC 0.43%
AVEO 0.43%
ULTA 0.43%
TRGP 0.43%
BEBE 0.43%
OAS 0.43%
SNI 0.43%
WBS 0.43%
ELS 0.43%
CMP 0.43%
JDAS 0.43%
SUP 0.43%
CE 0.43%
CFX 0.43%
HNR 0.43%
PKD 0.43%
INCY 0.43%
ARR 0.43%
EXTR 0.43%
MDVN 0.43%
CLR 0.43%
BSG 0.43%
DOLE 0.43%
CDNS 0.43%
MSGN 0.43%
KEG 0.43%
URI 0.43%
XEC 0.43%
MKC 0.43%
NFX 0.42%
KALU 0.42%
CLH 0.42%
BDN 0.42%
KBW 0.42%
KFN 0.42%
DENN 0.42%
GT 0.42%
BPOP 0.42%
GORO 0.42%
ARTC 0.42%
KMT 0.42%
SAFM 0.42%
ITRI 0.42%
SWIR 0.42%
PAY 0.42%
WITS 0.42%
HR 0.42%
CIT 0.42%
AFL 0.42%
WBSN 0.42%
CGX 0.42%
WCRX 0.42%
AJG 0.42%
GRP 0.42%
ALX 0.42%
SHAW 0.42%
UMPQ 0.42%
JNS 0.42%
PTP 0.42%
PTC 0.42%
SIMG 0.42%
CPWR 0.42%
HRC 0.42%
ZBH 0.42%
VIAV 0.42%
CRS 0.42%
ST 0.42%
CRZO 0.42%
AEIS 0.42%
TECD 0.42%
FOSL 0.42%
FMBI 0.42%
GRT 0.42%
NAFC 0.42%
MFN 0.42%
HPY 0.42%
UTHR 0.42%
MJN 0.42%
DRE 0.42%
XRTX 0.42%
WM 0.42%
VECO 0.42%
CNQR 0.42%
STWD 0.42%
BMRN 0.42%
ID 0.42%
ELGX 0.42%
DY 0.42%
CBB 0.42%
TKR 0.42%
CAR 0.42%
VAS 0.42%
ZINC 0.42%
CML 0.42%
IAC 0.42%
AWI 0.42%
DHI 0.42%
TE 0.42%
SGY 0.42%
DRIV 0.42%
BZ 0.42%
RAX 0.42%
DNKN 0.42%
SEPR 0.42%
BEL 0.42%
CNVR 0.42%
AABA 0.42%
RBCN 0.42%
USG 0.42%
SHS 0.42%
EIX 0.42%
MENT 0.42%
CB 0.42%
GIB 0.42%
PPO 0.42%
IVC 0.42%
ENTG 0.42%
PCYC 0.42%
EAS 0.42%
NFLX 0.42%
BAS 0.41%
EXR 0.41%
OVTI 0.41%
L 0.41%
MKSI 0.41%
VNR 0.41%
BRKS 0.41%
NX 0.41%
SOV 0.41%
EXEL 0.41%
ARAY 0.41%
GMCR 0.41%
LBTY_A 0.41%
LLNW 0.41%
MOD 0.41%
DBD 0.41%
AGNC 0.41%
NLSN 0.41%
BB 0.41%
MNTA 0.41%
HC 0.41%
MAC 0.41%
EVR 0.41%
FST 0.41%
EQC 0.41%
RACE 0.41%
CYNO 0.41%
KND 0.41%
EHC 0.41%
PRK 0.41%
CBSS 0.41%
BUCY 0.41%
LM 0.41%
CPB 0.41%
RLD 0.41%
SSRM 0.41%
WDAY 0.41%
GHL 0.41%
JLL 0.41%
SWC 0.41%
ROG 0.41%
SCS 0.41%
SIX 0.41%
FLO 0.41%
UFS 0.41%
BRCM 0.41%
BIG 0.41%
IO 0.41%
BHC 0.41%
PLCM 0.41%
OMCL 0.41%
WMB 0.41%
CNP 0.41%
AM 0.41%
TRMB 0.41%
OMG 0.41%
PLAB 0.41%
VEEV 0.41%
SRPT 0.41%
FNSR 0.41%
IBKR 0.41%
AMCC 0.41%
EAT 0.41%
SRC 0.41%
CECO 0.41%
BKI 0.41%
DIOD 0.41%
GVA 0.41%
HZN 0.41%
SNWL 0.41%
AMD 0.41%
ORA 0.41%
SGEN 0.41%
CPRT 0.41%
SIRF 0.41%
NCX 0.41%
XRX 0.41%
FTNT 0.41%
RCL 0.40%
HPQ 0.40%
MDLZ 0.40%
PEGA 0.40%
PRXL 0.40%
COT 0.40%
ANGO 0.40%
IEX 0.40%
SCCO 0.40%
TDC 0.40%
AME 0.40%
H 0.40%
DIN 0.40%
CNW 0.40%
FAF 0.40%
PJC 0.40%
CAAS 0.40%
SSTI 0.40%
LNCE 0.40%
VHC 0.40%
ADCT 0.40%
WTSL 0.40%
RHT 0.40%
RCI 0.40%
GG 0.40%
MLM 0.40%
FI 0.40%
ESV 0.40%
MTN 0.40%
LXRX 0.40%
ALLY 0.40%
TRIP 0.40%
FITB 0.40%
YUM 0.40%
IMO 0.40%
GPS 0.40%
RGA 0.40%
CRL 0.40%
BLT 0.40%
NES 0.40%
AOBC 0.40%
MNST 0.40%
MIC 0.40%
POOL 0.40%
PCAR 0.40%
JCP 0.40%
CBST 0.40%
PMCS 0.40%
PII 0.40%
BFAM 0.40%
HII 0.40%
APTV 0.40%
NAT 0.40%
CBEY 0.40%
DE 0.40%
ACOR 0.40%
IBKC 0.40%
LXP 0.40%
CMC 0.40%
GLPI 0.40%
TIBX 0.40%
LF 0.40%
SWKS 0.40%
HW 0.40%
PEI 0.40%
PACD 0.40%
WMS 0.40%
EYE 0.40%
SBY 0.40%
XCO 0.40%
COMM 0.40%
MINI 0.40%
NVE 0.40%
KATE 0.40%
BJS 0.40%
KNX 0.40%
KSE 0.40%
M 0.40%
IQV 0.40%
FRC 0.40%
PAG 0.40%
HLF 0.40%
RLGY 0.40%
INGR 0.39%
DB 0.39%
CCEP 0.39%
JNPR 0.39%
BLMN 0.39%
KR 0.39%
PGH 0.39%
SCHL 0.39%
STAY 0.39%
RGC 0.39%
WRES 0.39%
INVA 0.39%
VAL 0.39%
CFG 0.39%
GLA 0.39%
NSU 0.39%
MMR 0.39%
TXT 0.39%
WCN 0.39%
SHLM 0.39%
FRT 0.39%
UHS 0.39%
KOS 0.39%
WP 0.39%
RPT 0.39%
PBYI 0.39%
ADM 0.39%
UHAL 0.39%
O 0.39%
DG 0.39%
S 0.39%
XNPT 0.39%
TSEM 0.39%
FNV 0.39%
MOS 0.39%
SUI 0.39%
EMN 0.39%
RLJ 0.39%
SHLD 0.39%
LEA 0.39%
GRPN 0.39%
HFC 0.39%
MTH 0.39%
WNC 0.39%
ADS 0.39%
MELI 0.39%
ESS 0.39%
AFFX 0.39%
ACHN 0.39%
P 0.39%
ASB 0.39%
PLD 0.39%
WFT 0.39%
NRG 0.39%
ADT 0.39%
KCG 0.39%
LKQ 0.39%
NEM 0.39%
FNF 0.39%
NSIT 0.39%
ALO 0.39%
POL 0.39%
TSS 0.39%
DOOR 0.39%
QRVO 0.39%
CNO 0.39%
ENOC 0.39%
PAYC 0.39%
HHC 0.39%
IR 0.39%
ISRG 0.39%
PCP 0.39%
MIK 0.39%
CLI 0.39%
SF 0.39%
TSE 0.39%
EVTC 0.39%
IMS 0.39%
PPC 0.39%
PRTA 0.39%
AZPN 0.39%
SPB 0.39%
WLSC 0.39%
IHS 0.39%
BAX 0.39%
RL 0.39%
MTD 0.39%
EXXI 0.39%
ANDE 0.39%
STMP 0.39%
FLOW 0.39%
JOE 0.39%
CVT 0.39%
ROIC 0.39%
DDS 0.39%
DECK 0.39%
ABMD 0.39%
GLF 0.39%
MV 0.39%
AUQ 0.39%
FCN 0.39%
COR 0.39%
TWO 0.39%
ASRT 0.39%
PE 0.39%
BEAM 0.39%
AKR 0.39%
AET 0.39%
VER 0.39%
SD 0.39%
GWRE 0.39%
MORE 0.39%
SKYW 0.39%
CBM 0.39%
SKX 0.39%
PRSC 0.39%
MCK 0.39%
TTEK 0.39%
N 0.39%
FEYE 0.38%
PACW 0.38%
PEGI 0.38%
CNHI 0.38%
STKL 0.38%
TRP 0.38%
JAS 0.38%
IART 0.38%
OCSL 0.38%
FSM 0.38%
MEG 0.38%
OLED 0.38%
CYS 0.38%
ALKS 0.38%
SPB 0.38%
EFX 0.38%
AGN 0.38%
OHI 0.38%
CVE 0.38%
PTHN 0.38%
SNA 0.38%
ZQK 0.38%
MSI 0.38%
CELG 0.38%
DATA 0.38%
PBA 0.38%
NVDA 0.38%
CAA 0.38%
SEAS 0.38%
HOV 0.38%
VSH 0.38%
FSK 0.38%
LULU 0.38%
SOA 0.38%
VAC 0.38%
LGND 0.38%
TTC 0.38%
ORIG 0.38%
WRE 0.38%
CPG 0.38%
TSCO 0.38%
DYN 0.38%
AER 0.38%
TGA 0.38%
QEP 0.38%
ABG 0.38%
ATHN 0.38%
PRTY 0.38%
WAIR 0.38%
ROSE 0.38%
HT 0.38%
AYI 0.38%
DK 0.38%
WRK 0.38%
CPRI 0.38%
OIS 0.38%
MTGE 0.38%
IFF 0.38%
USCR 0.38%
CBRE 0.38%
HAYN 0.38%
VMI 0.38%
AKRX 0.38%
JAZZ 0.38%
MWA 0.38%
ZG 0.38%
PES 0.38%
ESI 0.38%
VLO 0.38%
EPE 0.38%
HES 0.38%
UAA 0.38%
RAD 0.38%
LI 0.38%
CTRX 0.38%
ALV 0.38%
FIO 0.38%
NBL 0.38%
HAE 0.38%
SSNC 0.38%
PFS 0.38%
OC 0.38%
GDP 0.38%
MLHR 0.38%
STC 0.38%
ACM 0.38%
IVR 0.38%
NRF 0.38%
STAG 0.38%
GNL 0.38%
COTY 0.38%
RBN 0.38%
TIVO 0.38%
AWH 0.38%
SYK 0.38%
GWR 0.38%
SCI 0.38%
CHTR 0.38%
LQ 0.38%
SBL 0.38%
ARUN 0.38%
DHT 0.38%
XXIA 0.38%
CSGP 0.38%
ENR 0.38%
HLT 0.38%
BMR 0.38%
MTG 0.38%
MTDR 0.38%
MSTR 0.38%
EXC 0.38%
ARCO 0.38%
CNC 0.38%
RH 0.38%
RICE 0.38%
CSRA 0.38%
MDCA 0.38%
ALLT 0.38%
MXL 0.37%
TAHO 0.37%
VGR 0.37%
FCPT 0.37%
GPK 0.37%
SM 0.37%
PBF 0.37%
HZNP 0.37%
END 0.37%
AAL 0.37%
NSH 0.37%
QDEL 0.37%
CHK 0.37%
SPWR 0.37%
GHDX 0.37%
TU 0.37%
OFG 0.37%
LORL 0.37%
FNF 0.37%
PTF 0.37%
ARCB 0.37%
JE 0.37%
MTRX 0.37%
PSUN 0.37%
RADS 0.37%
TWTR 0.37%
RP 0.37%
TROX 0.37%
PINC 0.37%
CUDA 0.37%
PGNX 0.37%
AMSG 0.37%
SCUR 0.37%
NOV 0.37%
BTG 0.37%
CRC 0.37%
SPLK 0.37%
WEN 0.37%
LSXM_K 0.37%
JBHT 0.37%
ABCO 0.37%
EPAY 0.37%
SGI 0.37%
SITC 0.37%
ASIA 0.37%
SALT 0.37%
TCF 0.37%
TMH 0.37%
EEQ 0.37%
EGRX 0.37%
APA 0.37%
GIL 0.37%
TNP 0.37%
SABR 0.37%
RBC 0.37%
INFA 0.37%
CCOI 0.37%
AEGN 0.37%
BIOS 0.37%
DEA 0.37%
QLIK 0.37%
ZNGA 0.37%
TERP 0.37%
CDW 0.37%
HMA 0.37%
PRGS 0.37%
BNK 0.37%
JCI 0.37%
BRKR 0.37%
HAL 0.37%
EDR 0.37%
POT 0.37%
FBC 0.37%
MDXG 0.37%
BERY 0.37%
AMED 0.37%
ESND 0.37%
SINA 0.37%
WEBM 0.37%
CORT 0.37%
SNCR 0.37%
HDS 0.37%
BRS 0.37%
BRX 0.37%
AROC 0.37%
WST 0.37%
DVN 0.37%
BTE 0.37%
LBRD_K 0.37%
TNGO 0.37%
TRCO 0.37%
BCOR 0.37%
PKY 0.37%
NHP 0.37%
MI 0.37%
FANG 0.37%
HTS 0.37%
ACTA 0.37%
CLF 0.37%
AAMC 0.37%
ILG 0.37%
MESG 0.37%
CPA 0.37%
AGR 0.37%
AMPH 0.37%
CODE 0.37%
CEI 0.37%
GBX 0.37%
DXPE 0.37%
AIN 0.37%
BPFH 0.37%
MOS 0.37%
PRAH 0.36%
RUBI 0.36%
ATHR 0.36%
MERC 0.36%
NEWM 0.36%
NLNK 0.36%
EURN 0.36%
LSCC 0.36%
SNTS 0.36%
ASNA 0.36%
MTSI 0.36%
JCG 0.36%
UONE_K 0.36%
AMAG 0.36%
VRNT 0.36%
ENV 0.36%
RSH 0.36%
GPRO 0.36%
RAI 0.36%
AIR 0.36%
WMC 0.36%
RGLD 0.36%
GIVN 0.36%
SDRL 0.36%
ANF 0.36%
BGG 0.36%
OA 0.36%
PVH 0.36%
MOH 0.36%
GOOS 0.36%
SC 0.36%
FBHS 0.36%
ACTG 0.36%
CSU 0.36%
ALDR 0.36%
SIVB 0.36%
RJF 0.36%
NANO 0.36%
ARMK 0.36%
NXST 0.36%
EGN 0.36%
ERF 0.36%
ANAC 0.36%
CELL 0.36%
INVN 0.36%
SYY 0.36%
ALLE 0.36%
NWSA 0.36%
WPG 0.36%
LPI 0.36%
ACCO 0.36%
CPE 0.36%
REXR 0.36%
QSR 0.36%
NOW 0.36%
DOC 0.36%
TPRE 0.36%
ARRY 0.36%
CXS 0.36%
GPOR 0.36%
BW 0.36%
GGG 0.36%
CLNY 0.36%
MSG 0.36%
TVPT 0.36%
FLT 0.36%
AMZN 0.36%
GPT 0.36%
RJET 0.36%
CBH 0.36%
BLOX 0.36%
GGP 0.36%
BEN 0.36%
MYCC 0.36%
NCLH 0.36%
TREE 0.36%
BKW 0.36%
GSAT 0.36%
KRG 0.36%
BLDR 0.36%
EVHC 0.36%
MANT 0.36%
BSFT 0.36%
RMD 0.36%
CDK 0.36%
RUN 0.36%
XL 0.36%
BMCH 0.36%
TPX 0.35%
TROW 0.35%
TIE 0.35%
GLW 0.35%
SXC 0.35%
EPL 0.35%
NCS 0.35%
STAR 0.35%
SUM 0.35%
OUT 0.35%
FOE 0.35%
KN 0.35%
CVLT 0.35%
SN 0.35%
SSP 0.35%
REXX 0.35%
BEC 0.35%
VSAT 0.35%
RPAI 0.35%
ACHC 0.35%
TRS 0.35%
FTK 0.35%
MRO 0.35%
DGI 0.35%
CSTM 0.35%
PLAY 0.35%
QLGC 0.35%
CAMP 0.35%
ANAT 0.35%
NCI 0.35%
OPLK 0.35%
UCTT 0.35%
RGS 0.35%
RWT 0.35%
AREX 0.35%
TEG 0.35%
EPZM 0.35%
HNGR 0.35%
FIT 0.35%
IWOV 0.35%
SHAK 0.35%
IRC 0.35%
RESI 0.35%
CPHD 0.35%
CSH 0.35%
REV 0.35%
ROH 0.35%
ATH 0.35%
SSNI 0.35%
ATMI 0.35%
LOGM 0.35%
DSW 0.35%
AJRD 0.35%
AGRO 0.35%
QLYS 0.35%
SGNT 0.35%
LNKD 0.35%
CYTK 0.35%
SYNT 0.35%
BCO 0.35%
PCTY 0.35%
EXPE 0.35%
EV 0.35%
ZLTQ 0.35%
OMF 0.35%
IBP 0.35%
NVLN 0.35%
EGHT 0.35%
HPE 0.35%
KRA 0.35%
RTK 0.34%
I 0.34%
MMS 0.34%
TTMI 0.34%
HK 0.34%
CAVM 0.34%
AAT 0.34%
OFC 0.34%
SU 0.34%
NOVL 0.34%
LVNT_A 0.34%
RTRX 0.34%
REN 0.34%
OTEX 0.34%
IRET 0.34%
NRZ 0.34%
VQ 0.34%
CTCT 0.34%
WIN 0.34%
GIMO 0.34%
TVTY 0.34%
FNFG 0.34%
AEC 0.34%
MOV 0.34%
HURN 0.34%
TSYS 0.34%
RS 0.34%
SBGI 0.34%
MCRN 0.34%
TPLM 0.34%
SEMG 0.34%
IPGP 0.34%
MEDX 0.34%
SFM 0.34%
CACQ 0.34%
BLC 0.34%
SR 0.34%
VVC 0.34%
SIRI 0.34%
KOP 0.34%
EXP 0.34%
CVD 0.34%
IT 0.34%
AGE 0.34%
TOWR 0.34%
ALOG 0.34%
CUBE 0.34%
CWH 0.34%
RXN 0.34%
FET 0.34%
MUX 0.34%
VNDA 0.34%
EXAM 0.34%
FALC 0.33%
ALB 0.33%
STNG 0.33%
TLM 0.33%
CKEC 0.33%
ILA 0.33%
CHDN 0.33%
SCTY 0.33%
KNDI 0.33%
WPC 0.33%
COCO 0.33%
ENB 0.33%
BDBD 0.33%
TMUS 0.33%
OUBS 0.33%
GYI 0.33%
AFR 0.33%
JCI 0.33%
STRA 0.33%
IRT 0.33%
FDP 0.33%
DRII 0.33%
SAND 0.33%
JEF 0.33%
GLOG 0.33%
PSIX 0.33%
WTS 0.33%
IRBT 0.33%
SEIC 0.33%
COGN 0.33%
WRI 0.33%
TPC 0.33%
RBK 0.33%
CTX 0.33%
HPP 0.33%
ADPT 0.33%
TGT 0.33%
OPK 0.33%
SSYS 0.33%
FPRX 0.33%
LIN 0.33%
ART 0.33%
CHRS 0.33%
SAH 0.33%
XYL 0.33%
OII 0.33%
BLUE 0.33%
BRY 0.33%
PPDI 0.33%
AEO 0.33%
HA 0.33%
BGC 0.33%
WGL 0.33%
VVUS 0.32%
D 0.32%
DPLO 0.32%
CHMT 0.32%
BZH 0.32%
NOMD 0.32%
UAL 0.32%
UIS 0.32%
AMRI 0.32%
INN 0.32%
MAA 0.32%
GLT 0.32%
DLM 0.32%
OPTR 0.32%
PNC 0.32%
CDE 0.32%
DXCM 0.32%
SBUX 0.32%
MNOCF 0.32%
GLRE 0.32%
LFUS 0.32%
ATW 0.32%
TISI 0.32%
DOW 0.32%
STE 0.32%
LC 0.32%
PA 0.31%
WR 0.31%
RBA 0.31%
PANW 0.31%
TRV 0.31%
CZR 0.31%
VC 0.31%
ANGI 0.31%
SLF 0.31%
RATE 0.31%
TW 0.31%
GEF 0.31%
ETP 0.31%
WEX 0.31%
DD 0.31%
HRB 0.31%
OCLR 0.31%
GKOS 0.31%
GLUU 0.31%
AMTG 0.31%
TMK 0.31%
MHO 0.31%
JP 0.31%
AMWD 0.31%
VOCS 0.31%
HOTT 0.31%
MTOR 0.31%
EVVV 0.31%
VA 0.31%
AMLN 0.31%
LU 0.31%
SWK 0.31%
MNK 0.30%
RECN 0.30%
ANET 0.30%
WAC 0.30%
VMED 0.30%
OBE 0.30%
PMC 0.30%
GW 0.30%
OWW 0.30%
DAR 0.30%
COLM 0.30%
TDS 0.30%
WAB 0.30%
WWAV 0.30%
BYI 0.30%
ZLC 0.30%
HMHC 0.30%
LIVN 0.30%
CPN 0.30%
SHEN 0.30%
FIVE 0.30%
W 0.30%
TSRO 0.30%
BRNC 0.30%
COWN 0.30%
TARO 0.30%
GPRE 0.30%
TNK 0.30%
SNBR 0.30%
CMLS 0.30%
XNCR 0.30%
LYB 0.30%
OPI 0.30%
MSCI 0.30%
NXTP 0.30%
ABUS 0.29%
BRP 0.29%
NNBR 0.29%
ADBE 0.29%
WABC 0.29%
ITG 0.29%
IMCL 0.29%
ASCA 0.29%
QMAR 0.29%
AG 0.29%
SSD 0.29%
DADE 0.29%
LPSN 0.29%
PPG 0.29%
MAR 0.29%
CTLT 0.29%
KAR 0.29%
TNET 0.29%
ALEX 0.29%
GM 0.29%
HIG 0.29%
GNC 0.29%
AV 0.29%
C 0.29%
DNN 0.29%
TTS 0.29%
TGH 0.28%
FIX 0.28%
TESO 0.28%
LXK 0.28%
FRTA 0.28%
CTRE 0.28%
MITT 0.28%
NP 0.28%
ENDP 0.28%
OLN 0.28%
NUS 0.28%
GNSS 0.28%
DSX 0.28%
TMST 0.28%
CONN 0.28%
FMSA 0.28%
TXN 0.28%
WCN 0.28%
PDCO 0.28%
ARTG 0.28%
SERV 0.28%
ALNY 0.27%
REGI 0.27%
NVT 0.27%
REY 0.27%
ENTA 0.27%
GES 0.27%
ORC 0.27%
ERIE 0.27%
JAKK 0.27%
NGD 0.27%
CBIO 0.27%
MIDD 0.27%
CSL 0.27%
AGIO 0.27%
HE 0.27%
SHU 0.27%
CG 0.27%
SBNY 0.27%
PAS 0.27%
LECO 0.27%
KW 0.27%
IRWD 0.26%
CBOE 0.26%
RMK 0.26%
SLGN 0.26%
PD 0.26%
KMPR 0.26%
CRAY 0.26%
AOS 0.26%
CYMI 0.26%
EBAY 0.26%
CALM 0.26%
CXR 0.26%
SWSI 0.26%
IDXX 0.26%
RARE 0.26%
ZOES 0.25%
BURL 0.25%
MDSO 0.25%
SNH 0.25%
ARG 0.25%
MC 0.25%
BRO 0.25%
MLNX 0.25%
TRI 0.25%
LITE 0.25%
CYN 0.25%
HME 0.25%
TMHC 0.25%
OXY 0.25%
UNVR 0.25%
UE 0.25%
BKU 0.25%
QCOM 0.25%
SY 0.25%
RA 0.25%
GSM 0.25%
RSPP 0.25%
MPW 0.25%
MEH 0.25%
HTA 0.25%
NOG 0.25%
LNTH 0.25%
WTW 0.25%
KKD 0.25%
CDWC 0.24%
CMPR 0.24%
DST 0.24%
HITT 0.24%
APLE 0.24%
KLXI 0.24%
CCRN 0.24%
TBL 0.24%
GEN 0.24%
GBCI 0.24%
ABM 0.24%
SXE 0.24%
VARI 0.24%
FRED 0.24%
SEBL 0.24%
PSB 0.24%
TTEC 0.24%
CHE 0.24%
HMSY 0.24%
FORR 0.24%
ICUI 0.24%
FDRY 0.24%
TRMK 0.24%
DPZ 0.24%
AAWW 0.24%
HCC 0.24%
PCRX 0.24%
BWXT 0.24%
ADTN 0.24%
CPNO 0.24%
WINN 0.24%
OTTR 0.24%
PCH 0.24%
FFIN 0.24%
JOSB 0.24%
SFG 0.24%
HEI 0.24%
YUMC 0.23%
TYL 0.23%
AMN 0.23%
EPIQ 0.23%
HLT 0.23%
ALE 0.23%
PZZA 0.23%
NTG 0.23%
BEZ 0.23%
UNF 0.23%
HGT 0.23%
HUBG 0.23%
BAH 0.23%
PBT 0.23%
NCMI 0.23%
WWE 0.23%
CHSI 0.23%
KDN 0.23%
MX 0.23%
CB 0.23%
CUB 0.23%
TGI 0.23%
UIL 0.23%
ALSN 0.23%
WCC 0.23%
JACK 0.23%
PAET 0.23%
HS 0.23%
LTM 0.23%
MATW 0.23%
MATK 0.23%
VLY 0.23%
CVBF 0.23%
DNEX 0.23%
LNCR 0.23%
SYKE 0.23%
ASEI 0.23%
NBTB 0.23%
HWC 0.23%
JKHY 0.23%
MFLX 0.23%
LPS 0.23%
HCSG 0.23%
IPI 0.23%
SANM 0.23%
SFR 0.23%
BC 0.23%
DPL 0.23%
CMO 0.23%
INT 0.23%
WAFD 0.23%
EGP 0.23%
APEI 0.23%
TXRH 0.23%
TWGP 0.23%
FMER 0.23%
FSP 0.23%
PFCB 0.23%
GATX 0.23%
EBS 0.23%
MDT 0.23%
ORB 0.23%
BRKL 0.23%
BECN 0.23%
QSFT 0.23%
ASPM 0.23%
ICON 0.23%
VIVO 0.23%
MGLN 0.23%
AAN 0.23%
SVR 0.23%
SIGI 0.23%
FSYS 0.23%
PGI 0.23%
MSA 0.22%
AXYS 0.22%
CAKE 0.22%
LHCG 0.22%
UNFI 0.22%
NXGN 0.22%
NTY 0.22%
PRU 0.22%
DFG 0.22%
CEB 0.22%
BWLD 0.22%
EGLE 0.22%
SRX 0.22%
GYMB 0.22%
CHH 0.22%
OXPS 0.22%
CLB 0.22%
SNX 0.22%
MNRO 0.22%
PAR 0.22%
GI 0.22%
BRC 0.22%
CASY 0.22%
ACO 0.22%
WERN 0.22%
FICO 0.22%
GTLS 0.22%
CRR 0.22%
AVAV 0.22%
FNB 0.22%
KNX 0.22%
CBRL 0.22%
UEPS 0.22%
LEAF 0.22%
JLG 0.22%
CW 0.22%
CPKI 0.22%
USFD 0.22%
PNRA 0.22%
SQNM 0.22%
EXK 0.22%
SONC 0.22%
WRC 0.22%
IIVI 0.22%
EZPW 0.22%
SPNC 0.22%
MCF 0.22%
PLXS 0.22%
CMTL 0.22%
LUFK 0.22%
CBSH 0.22%
DMND 0.22%
HTV 0.22%
HTLD 0.22%
ODFL 0.22%
BPT 0.22%
GNTX 0.22%
MKTX 0.22%
WWW 0.22%
WRLD 0.22%
CSR 0.22%
CACI 0.22%
SXT 0.22%
BIO 0.22%
ALTH 0.22%
NTGR 0.22%
SBH 0.22%
NPK 0.22%
IBOC 0.22%
AXP 0.22%
FCAU 0.22%
RISK 0.21%
RSTI 0.21%
COGT 0.21%
SHOO 0.21%
ROL 0.21%
PTRY 0.21%
DVR 0.21%
PSD 0.21%
NRPH 0.21%
QCOR 0.21%
SYNA 0.21%
EDE 0.21%
POWL 0.21%
B 0.21%
R 0.21%
GEO 0.21%
PSSI 0.21%
HI 0.21%
BLKB 0.21%
WDR 0.21%
CHTT 0.21%
TR 0.21%
BXS 0.21%
SAM 0.21%
AIPC 0.21%
ESL 0.21%
EVH 0.21%
DTSI 0.21%
ICPT 0.21%
SAVE 0.21%
PRA 0.21%
HMN 0.21%
ASTE 0.21%
IVX 0.21%
AWR 0.21%
KNDL 0.21%
DS 0.21%
PRAA 0.21%
TAL 0.21%
GCO 0.21%
HOLI 0.21%
FPO 0.21%
NHI 0.21%
BONT 0.21%
ENS 0.21%
IPCC 0.21%
ZOLL 0.21%
PLX 0.21%
CVTX 0.21%
CAB 0.21%
BJ 0.21%
GEOY 0.21%
AIT 0.21%
FWRD 0.21%
LPNT 0.21%
LINC 0.21%
SFSF 0.21%
AAV 0.21%
IVIL 0.21%
THX 0.21%
CTRN 0.21%
DAKT 0.21%
ONB 0.21%
LSI 0.21%
MOG_A 0.21%
SJT 0.21%
WTFC 0.21%
LAYN 0.21%
IMGC 0.21%
GFIG 0.21%
SONO 0.21%
DLX 0.21%
PQ 0.21%
HTZ 0.21%
EFD 0.21%
LANC 0.21%
MNI 0.21%
RCRC 0.21%
SCL 0.21%
CSIQ 0.21%
TDY 0.21%
ISCA 0.21%
JH 0.21%
DCP 0.21%
CLC 0.21%
TSFG 0.21%
SFC 0.21%
JMDT 0.21%
OO 0.21%
AZR 0.21%
ASPS 0.21%
SUSQ 0.21%
AUXL 0.21%
LSTR 0.21%
CYPB 0.21%
CPLA 0.21%
IGTE 0.21%
EAC 0.21%
AACC 0.21%
SON 0.20%
KCG 0.20%
TZIX 0.20%
JW_A 0.20%
ADIC 0.20%
CRA 0.20%
NXL 0.20%
VLTR 0.20%
POR 0.20%
STAR 0.20%
FOXA 0.20%
RLI 0.20%
XPO 0.20%
ESE 0.20%
AMCX 0.20%
NEU 0.20%
STRI 0.20%
EE 0.20%
IQNT 0.20%
CATO 0.20%
RCII 0.20%
TUP 0.20%
VG 0.20%
ARJ 0.20%
AF 0.20%
ISE 0.20%
KSWS 0.20%
TLRD 0.20%
HXL 0.20%
LCAV 0.20%
IDA 0.20%
NNI 0.20%
BLUD 0.20%
GTAT 0.20%
WPX 0.20%
TALX 0.20%
NKTR 0.20%
EM 0.20%
PER 0.20%
KCS 0.20%
ARD 0.20%
AYR 0.20%
SNIC 0.20%
CCMP 0.20%
MCCC 0.20%
TRBS 0.20%
NWE 0.20%
FLA 0.20%
WSO 0.20%
VRUS 0.20%
HSNI 0.20%
TT 0.20%
CVI 0.20%
SMMX 0.20%
THS 0.20%
UMBF 0.20%
REM 0.20%
MAKO 0.20%
APPB 0.20%
CRDN 0.20%
KERX 0.20%
CNCT 0.20%
ACOM 0.20%
FELE 0.20%
ATR 0.20%
CWT 0.20%
FRAN 0.20%
ALGT 0.20%
NTMD 0.20%
SJI 0.20%
MUSE 0.20%
ICLR 0.20%
HALO 0.20%
PF 0.20%
BKE 0.20%
HLSS 0.20%
GAS 0.20%
TSG 0.20%
ARRO 0.20%
KAR 0.20%
BJRI 0.20%
IDR 0.20%
PB 0.20%
ISSX 0.20%
AMH 0.20%
QUAD 0.20%
MCGC 0.20%
TGB 0.20%
BGO 0.20%
AQNT 0.20%
KEX 0.20%
OMI 0.20%
ERT 0.20%
WWD 0.20%
BGS 0.20%
DDUP 0.20%
CEC 0.20%
WMS 0.20%
PEET 0.20%
EZCH 0.20%
GDOT 0.20%
PXR 0.20%
ALJ 0.20%
ITT 0.20%
OPEN 0.20%
OS 0.20%
DP 0.20%
CBK 0.20%
ANW 0.20%
SBRA 0.20%
CEL 0.20%
MM 0.20%
PFGC 0.20%
RTSX 0.20%
PBH 0.20%
MCRL 0.20%
RVI 0.20%
AMGN 0.20%
MTCH 0.20%
SPSX 0.20%
SODA 0.20%
AVA 0.20%
OSIS 0.20%
HGG 0.20%
EGY 0.20%
BARE 0.20%
NNN 0.20%
APCC 0.20%
KNL 0.20%
HTWR 0.20%
CSGS 0.20%
CBZ 0.20%
LIFC 0.20%
CHAP 0.20%
IPHS 0.20%
ACR 0.20%
VSI 0.20%
KEYW 0.20%
NTO 0.20%
DLP 0.20%
TREX 0.20%
LNN 0.20%
MFRM 0.20%
ONE 0.20%
MNKD 0.20%
HUBB 0.20%
SLRC 0.20%
YELP 0.20%
IMGN 0.20%
BPI 0.20%
PEB 0.20%
RHB 0.20%
SFL 0.20%
UBSI 0.20%
FDML 0.20%
PRI 0.20%
EMS 0.20%
AFSI 0.20%
HERO 0.20%
NWBI 0.20%
MHGC 0.20%
OSPN 0.20%
NAVG 0.20%
LRN 0.20%
GVHR 0.20%
AVCT 0.20%
SEH 0.20%
ATN 0.19%
LXU 0.19%
SPPI 0.19%
SIE 0.19%
ROLL 0.19%
ESC 0.19%
LQDT 0.19%
ALXN 0.19%
PNNT 0.19%
CBS 0.19%
LL 0.19%
XLS 0.19%
ENN 0.19%
LSS 0.19%
THR 0.19%
PSEC 0.19%
ANN 0.19%
VRA 0.19%
SEB 0.19%
MWIV 0.19%
PPP 0.19%
NADL 0.19%
PYX 0.19%
MA 0.19%
SUSS 0.19%
ARC 0.19%
QTM 0.19%
ABVT 0.19%
KNXA 0.19%
MASI 0.19%
WPRT 0.19%
EAGL 0.19%
FARO 0.19%
PVTB 0.19%
DHX 0.19%
TZOO 0.19%
AAN 0.19%
HTSI 0.19%
LAD 0.19%
GPRO 0.19%
ZGEN 0.19%
SYA 0.19%
ATRS 0.19%
CASC 0.19%
IBI 0.19%
MNT 0.19%
SIRO 0.19%
ETM 0.19%
CFL 0.19%
SRZ 0.19%
FCFS 0.19%
BXMT 0.19%
GSOL 0.19%
MYOG 0.19%
DEL 0.19%
CHG 0.19%
ATU 0.19%
MANH 0.19%
CGI 0.19%
XON 0.19%
STN 0.19%
KRON 0.19%
KELY_A 0.19%
MTSN 0.19%
IOSP 0.19%
RTEC 0.19%
PLKI 0.19%
SMDI 0.19%
AGII 0.19%
SYX 0.19%
WIND 0.19%
STEI 0.19%
MD 0.19%
BOH 0.19%
PSMT 0.19%
AXCA 0.19%
AVL 0.19%
WNG 0.19%
ENTR 0.19%
TRA 0.19%
NAK 0.19%
HRH 0.19%
HEES 0.19%
XAN 0.19%
KOMG 0.19%
BOKF 0.19%
VTG 0.19%
NXG 0.19%
BPZ 0.19%
SMRT 0.19%
POST 0.19%
RIGL 0.19%
KRI 0.19%
KPA 0.19%
BV 0.19%
ACAT 0.19%
NC 0.19%
HRBN 0.19%
IKN 0.19%
LAUR 0.19%
TWI 0.19%
ALAB 0.19%
GEOS 0.19%
EXPR 0.19%
OMTR 0.19%
USBE 0.19%
SMT 0.19%
NOR 0.19%
MBFI 0.19%
ARNA 0.19%
AXAS 0.19%
BEAT 0.19%
PSS 0.19%
CNET 0.19%
AIMC 0.19%
RUTH 0.19%
SPSS 0.19%
HHS 0.19%
VMSI 0.19%
TCBI 0.19%
SHOP 0.19%
FII 0.19%
ZUMZ 0.19%
HIBB 0.19%
ASPV 0.19%
ACMR 0.19%
HYSL 0.19%
CYBS 0.19%
DRS 0.19%
ARXT 0.19%
RDA 0.19%
SREV 0.19%
TUES 0.19%
TPCG 0.19%
PACR 0.19%
IMKT_A 0.19%
SLR 0.19%
NAVI 0.19%
FNGN 0.19%
SEM 0.19%
OXM 0.19%
SWI 0.19%
BABY 0.19%
PLMD 0.19%
AOL 0.19%
AATI 0.19%
TLB 0.19%
DDD 0.19%
EDMC 0.19%
GNRC 0.19%
VTIV 0.19%
HYDL 0.19%
RFP 0.19%
MYE 0.19%
AVG 0.19%
HSII 0.19%
ARLZ 0.19%
CHKR 0.19%
HOPE 0.19%
BANR 0.19%
SWM 0.19%
SFA 0.19%
SWFT 0.19%
MCRS 0.19%
RYI 0.19%
ARII 0.19%
FRK 0.19%
FSL 0.19%
AHG 0.19%
LDG 0.19%
MSM 0.19%
AMRS 0.19%
MFC 0.19%
FSTR 0.19%
PER 0.18%
CXW 0.18%
DRQ 0.18%
CSS 0.18%
ADNT 0.18%
WOOF 0.18%
RGR 0.18%
MCP 0.18%
GBL 0.18%
TUMI 0.18%
CENT 0.18%
ELNK 0.18%
EGOV 0.18%
ASTSF 0.18%
MPS 0.18%
KOSP 0.18%
FCSX 0.18%
RSAS 0.18%
CLD 0.18%
GAIA 0.18%
ANV 0.18%
GLBR 0.18%
CRBC 0.18%
CORV 0.18%
FCNC_A 0.18%
HNSN 0.18%
UPCS 0.18%
LEE 0.18%
DORM 0.18%
STRZ_A 0.18%
LAB 0.18%
AXLL 0.18%
SPSN 0.18%
TWB 0.18%
BCEI 0.18%
CYCL 0.18%
AMN 0.18%
WHQ 0.18%
KFI 0.18%
JNY 0.18%
CSOD 0.18%
NWN 0.18%
LMCA 0.18%
EOP 0.18%
CHUY 0.18%
TW 0.18%
IPS 0.18%
TSLA 0.18%
LCII 0.18%
PRLB 0.18%
LOPE 0.18%
CFFN 0.18%
HIH 0.18%
CLDT 0.18%
ALY 0.18%
FILE 0.18%
USNA 0.18%
SPTN 0.18%
G 0.18%
PMT 0.18%
TXMD 0.18%
ABAX 0.18%
ULTR 0.18%
MM 0.18%
TCC 0.18%
PACB 0.18%
FDS 0.18%
GLYT 0.18%
CRE 0.18%
AIRM 0.18%
MLNT 0.18%
TACO 0.18%
TEK 0.18%
SITE 0.18%
CYD 0.18%
CYBR 0.18%
EGBN 0.18%
IG 0.18%
ALTE 0.18%
FLWS 0.18%
WDFC 0.18%
CLDX 0.18%
MVK 0.18%
WEB 0.18%
CCO 0.18%
ISSC 0.18%
PFGC 0.18%
AXDX 0.18%
WETF 0.18%
FWLT 0.18%
OLLI 0.18%
TRK 0.18%
HIFR 0.18%
VVI 0.18%
BGCP 0.18%
NPSP 0.18%
UCBI 0.18%
WSTC 0.18%
CBU 0.18%
INXN 0.18%
CHFC 0.18%
ESPR 0.18%
BCPC 0.18%
VLTC 0.18%
CPS 0.18%
EVER 0.18%
CVGW 0.18%
APOG 0.18%
RNST 0.18%
OZK 0.18%
FOLD 0.18%
CLNY 0.18%
AY 0.18%
GDDY 0.18%
EBIX 0.18%
ZZ 0.18%
PTMK 0.18%
AAON 0.18%
IMPV 0.18%
FBP 0.18%
ORBK 0.18%
MAIN 0.18%
BNCL 0.18%
VET 0.18%
NEWR 0.18%
MMYT 0.18%
VIRT 0.18%
BANC 0.17%
ITCI 0.17%
AX 0.17%
FSS 0.17%
NGHC 0.17%
ITC 0.17%
AAOI 0.17%
LTC 0.17%
LTXB 0.17%
KS 0.17%
COKE 0.17%
AH 0.17%
MCRB 0.17%
TECH 0.17%
WMGI 0.17%
INO 0.17%
SSTK 0.17%
CSTE 0.17%
INGN 0.17%
WMG 0.17%
PRIM 0.17%
HQY 0.17%
CBF 0.17%
CHZ 0.17%
GOGO 0.17%
PAHC 0.17%
CALD 0.17%
HASI 0.17%
NILE 0.17%
PTLA 0.17%
NSP 0.17%
ATNI 0.17%
ATRO 0.17%
SFNC 0.17%
OPB 0.17%
PDM 0.17%
STRP 0.17%
PETC 0.17%
CSII 0.17%
OB 0.17%
EXPO 0.17%
PSX 0.17%
KIRK 0.17%
FN 0.17%
ACAD 0.17%
EXAS 0.17%
MPC 0.17%
PRO 0.17%
AZZ 0.17%
AVIV 0.17%
VRTS 0.17%
MDTH 0.17%
ANT 0.17%
QTWO 0.17%
AMBA 0.17%
INSM 0.17%
AEL 0.17%
KITE 0.17%
WTR 0.17%
AXON 0.17%
FRC 0.17%
SSB 0.17%
SPC 0.17%
RLYP 0.17%
PODD 0.17%
NVCR 0.17%
SRCI 0.17%
DYAX 0.17%
TPH 0.17%
WAGE 0.17%
NYRT 0.17%
WAL 0.17%
JCOM 0.17%
USPI 0.17%
KFRC 0.17%
ISBC 0.17%
GWB 0.17%
LOCK 0.17%
CPK 0.17%
SAIA 0.17%
CHRS 0.17%
LE 0.17%
HF 0.17%
MRC 0.17%
KPTI 0.17%
RPTP 0.17%
PDGI 0.17%
KTOS 0.17%
ATRA 0.17%
HABT 0.17%
NEOG 0.17%
MPAA 0.17%
DERM 0.17%
TUBE 0.17%
LXFT 0.17%
CST 0.17%
SPSC 0.17%
ABS 0.17%
TRUE 0.17%
JBT 0.17%
QUOT 0.17%
SIR 0.17%
QTS 0.17%
SCMP 0.17%
KRNY 0.17%
LNCO 0.17%
PFPT 0.17%
ABCB 0.17%
SMCI 0.17%
ESRT 0.17%
CJES 0.17%
EASI 0.17%
CSG 0.17%
PGRE 0.17%
PEN 0.17%
PTCT 0.17%
ADMS 0.17%
AEA 0.17%
HUG 0.17%
RDUS 0.17%
ZSPH 0.17%
CONE 0.17%
POS 0.17%
CORE 0.17%
INFI 0.17%
TFM 0.17%
CLE 0.17%
FCX 0.17%
CVTI 0.17%
DNOW 0.17%
FTEK 0.17%
AMH 0.17%
TNC 0.17%
EHTH 0.17%
ECR 0.17%
NMBL 0.17%
JJSF 0.17%
FLTX 0.17%
NVGS 0.17%
MORN 0.17%
SUPN 0.17%
SAGE 0.17%
CNSL 0.17%
EXLS 0.17%
GEVA 0.17%
PLUG 0.17%
SFS 0.17%
AEGR 0.17%
MMI 0.17%
INFO 0.17%
KEYW 0.17%
VNCE 0.17%
ZAYO 0.17%
NSM 0.17%
NDLS 0.17%
WLB 0.17%
TBPH 0.17%
AGI 0.17%
CMD 0.17%
EOPN 0.17%
SAIC 0.17%
MLNM 0.17%
SCAI 0.17%
EGL 0.17%
NVAX 0.17%
NVDQ 0.17%
GTRC 0.17%
PVX 0.17%
CMRX 0.17%
FLOW 0.17%
GOGL 0.17%
RKUS 0.17%
EPAM 0.17%
SDLP 0.17%
SNR 0.17%
NGVT 0.17%
OGS 0.17%
SCSC 0.17%
CBPX 0.17%
FRME 0.17%
GTT 0.17%
OPHT 0.17%
SFBS 0.17%
ADRO 0.17%
RRR 0.17%
FNBC 0.17%
INDB 0.17%
PLNT 0.17%
UBNT 0.17%
TOWN 0.17%
CSFL 0.17%
GK 0.17%
VRNS 0.17%
NBHC 0.17%
BOX 0.17%
FFBC 0.17%
IMMU 0.17%
MRCY 0.17%
OCAS 0.17%
ZEN 0.17%
ELLI 0.17%
THRM 0.17%
ENSG 0.17%
RGEN 0.17%
GMED 0.17%
ADSW 0.17%
ARGO 0.17%
WING 0.17%
VRTV 0.17%
ATKR 0.17%
CLVS 0.17%
XHR 0.17%
PSTG 0.17%
ASGN 0.17%
SYD 0.17%
CCG 0.17%
CERS 0.17%
FDC 0.17%
WSBC 0.17%
RSE 0.17%
ININ 0.17%
REX 0.17%
ORIT 0.17%
BLD 0.17%
LTRP_A 0.17%
SQ 0.17%
HY 0.17%
FRGI 0.17%
BDE 0.17%
LOXO 0.17%
FUEL 0.17%
SNV 0.17%
FLDM 0.17%
AERI 0.17%
LADR 0.16%
EIGI 0.16%
RUSH_A 0.16%
ABY 0.16%
DJO 0.16%
DLTH 0.16%
ETSY 0.16%
XLRN 0.16%
MHX 0.16%
RPXC 0.16%
TTPH 0.16%
EVRI 0.16%
NVMI 0.16%
XONE 0.16%
ASCM_A 0.16%
VTS 0.16%
HUBS 0.16%
RIC 0.16%
ALRM 0.16%
AUPH 0.16%
IFS 0.16%
INOV 0.16%
SP 0.16%
NMFC 0.16%
KLDX 0.16%
AVD 0.16%
AMC 0.16%
AVXS 0.16%
LPHI 0.16%
SNHY 0.16%
NMIH 0.16%
BHLB 0.16%
CWEN 0.16%
BCC 0.16%
FTD 0.16%
NVRO 0.16%
NTB 0.16%
EMMS 0.16%
RAS 0.16%
SYNH 0.16%
KEM 0.16%
ESNT 0.16%
EIG 0.16%
MKTO 0.16%
COUP 0.16%
YRCW 0.16%
CRNT 0.16%
ANIP 0.16%
MGNX 0.16%
MHS 0.16%
MIME 0.16%
CXRX 0.16%
SFXE 0.16%
STL 0.16%
MACK 0.16%
CXP 0.16%
PSYS 0.16%
RRGB 0.16%
TWLO 0.16%
CBPO 0.16%
VLRS 0.16%
ESGR 0.16%
ZFGN 0.16%
NKA 0.16%
ZNT 0.16%
RAVN 0.16%
VIGN 0.16%
RNG 0.16%
BL 0.16%
HTGC 0.16%
ZIOP 0.16%
BMS 0.16%
DWRE 0.16%
FOXF 0.16%
MRBK 0.16%
CAI 0.16%
MCDTA 0.16%
ASIX 0.16%
ZEUS 0.16%
GST 0.16%
FIBK 0.16%
SWX 0.16%
HCR 0.16%
VLCM 0.16%
AAC 0.16%
SRG 0.16%
TRNO 0.16%
WIX 0.16%
ARI 0.16%
SQA_A 0.16%
IPHI 0.16%
IDC 0.16%
CCP 0.16%
SALE 0.16%
FGEN 0.16%
MHR 0.16%
ECHO 0.16%
JONE 0.16%
HAWK 0.16%
MGP 0.16%
TOMO 0.16%
ELF 0.16%
GLBL 0.16%
AWAY 0.16%
BNFT 0.16%
APFH 0.16%
FLSH 0.16%
APKT 0.16%
PNX 0.16%
WGR 0.16%
SEDG 0.16%
CHSP 0.16%
WEBX 0.15%
CODI 0.15%
VSTO 0.15%
TMO 0.15%
BPMC 0.15%
TDOC 0.15%
LCI 0.15%
RCPT 0.15%
MMSI 0.15%
MET 0.15%
BETR 0.15%
MYOK 0.15%
APAM 0.15%
LVLT 0.15%
BUFF 0.15%
IBTX 0.15%
CVO 0.15%
DUK 0.15%
FOXH 0.15%
LDRH 0.15%
JRN 0.15%
WIRE 0.15%
PPBI 0.15%
SHFL 0.15%
BKI 0.15%
ONCE 0.15%
FIZZ 0.15%
AMBC 0.15%
GXDX 0.15%
AVNS 0.15%
CLGX 0.15%
SPG 0.15%
MGEE 0.15%
PHLY 0.15%
FMI 0.15%
PI 0.15%
KNSY 0.15%
CABO 0.14%
AR 0.14%
KEYN 0.14%
GTN 0.14%
LNY 0.14%
KYPH 0.14%
IFIN 0.14%
TST 0.14%
FCB 0.14%
CALX 0.14%
RST 0.14%
AI 0.14%
RYAM 0.14%
CAS 0.14%
NTNX 0.14%
TPL 0.14%
TEA 0.14%
WBT 0.14%
PBPB 0.14%
CVEO 0.14%
OSI 0.14%
VWR 0.14%
ANR 0.14%
EPAX 0.14%
PLAY 0.14%
DCI 0.14%
GOLD 0.14%
HZO 0.14%
RIGP 0.14%
EDO 0.14%
STU 0.14%
IMDC 0.14%
MGI 0.14%
EVC 0.13%
COF 0.13%
MVL 0.13%
MUSA 0.13%
CLUB 0.13%
VSM 0.13%
ACTV 0.13%
CQB 0.13%
DCEL 0.13%
PMTI 0.13%
WLH 0.13%
JUNO 0.13%
CENT_A 0.13%
IDEV 0.13%
PVG 0.13%
SLCA 0.13%
ARI 0.13%
PGTI 0.13%
TIME 0.13%
ORBC 0.13%
VPI 0.13%
GRUB 0.13%
ACV 0.13%
HOMB 0.13%
ECIL 0.13%
CACC 0.12%
RESP 0.12%
BEV 0.12%
OMM 0.12%
SKYF 0.12%
YCC 0.12%
SEMI 0.12%
LBY 0.12%
Z 0.12%
ICBC 0.12%
AZK 0.12%
KEYS 0.12%
TELL 0.12%
ABT 0.12%
DQE 0.12%
QCP 0.12%
EPIC 0.12%
HLI 0.12%
HGV 0.12%
TTD 0.12%
VSLR 0.12%
HTCH 0.12%
GLDN 0.12%
CMCO 0.11%
CASH 0.11%
AL 0.11%
PNP 0.11%
OXSQ 0.11%
APPX 0.11%
NTP 0.11%
TSY 0.11%
PCZ 0.11%
ERI 0.11%
BEXP 0.11%
CWEN_A 0.11%
BCF 0.11%
STOR 0.11%
WB 0.11%
CUTR 0.10%
OPSW 0.10%
TCS 0.10%
TRZ 0.10%
MEDP 0.10%
MITL 0.10%
KCI 0.10%
INSY 0.10%
INWK 0.10%
TWOU 0.10%
PFWD 0.10%
CPGX 0.10%
CYTC 0.10%
PAL 0.10%
BBW 0.09%
BDX 0.09%
STI 0.09%
RCAP 0.09%
CFR 0.09%
ATHL 0.09%
MEI 0.09%
RTW 0.09%
WBA 0.09%
COTV 0.09%
CMVT 0.09%
VVV 0.09%
VOYA 0.09%
PGL 0.09%
ACIA 0.09%
JNC 0.08%
NOVT 0.08%
TOM 0.08%
PWI 0.08%
LPG 0.08%
BHS 0.08%
RCI 0.08%
ZTS 0.08%
MAG 0.08%
GOLF 0.08%
FHR 0.08%
GGL 0.08%
CAE 0.08%
KING 0.07%
PKY 0.07%
ET 0.07%
COHU 0.07%
RYI 0.07%
FHB 0.07%
PIXR 0.07%
CKXE 0.06%
GTK 0.06%
MTEM 0.06%
CC 0.06%
TRLA 0.06%
MXO 0.06%
PSG 0.06%
SRNA 0.06%
UNIT 0.06%
MRVC 0.06%
BNE 0.06%
SHOR 0.06%
WES 0.06%
REVG 0.06%
STT 0.06%
AVOL 0.05%
EDMC 0.05%
EZM 0.05%
PZG 0.04%
PDG 0.04%
ENT 0.04%
ESLT 0.04%
EC 0.03%
WRD 0.03%
FGL 0.03%
LW 0.02%
KYTH 0.02%
ZU 0.02%
TSG 0.01%
In [ ]: