Notebook
In [1]:
# Get backtest object
bt = get_backtest('59859055e3e8b44fbeddad93')
100% Time: 0:00:31|###########################################################|
In [5]:
bt.create_full_tear_sheet(estimate_intraday=True, slippage=1)
Entire data start date: 2007-08-01
Entire data end date: 2015-07-31


Backtest Months: 95
Performance statistics Backtest
annual_return 0.08
cum_returns_final 0.81
annual_volatility 0.03
sharpe_ratio 2.37
calmar_ratio 2.15
stability_of_timeseries 0.92
max_drawdown -0.04
omega_ratio 1.55
sortino_ratio 3.99
skew 0.88
kurtosis 11.10
tail_ratio 1.23
common_sense_ratio 1.33
gross_leverage 1.00
information_ratio -0.00
alpha 0.07
beta 0.01
Worst drawdown periods net drawdown in % peak date valley date recovery date duration
0 3.60 2008-10-09 2008-11-21 2008-12-30 59
1 3.60 2014-11-24 2014-12-23 NaT NaN
2 2.81 2011-10-11 2012-07-20 2012-12-03 300
3 1.48 2011-07-01 2011-07-28 2011-08-26 41
4 1.40 2008-06-20 2008-07-02 2008-07-15 18

[-0.004 -0.008]
Stress Events mean min max
Lehmann 0.08% -0.72% 1.11%
US downgrade/European Debt Crisis 0.07% -0.28% 0.34%
Fukushima 0.05% -0.14% 0.34%
EZB IR Event 0.03% -0.19% 0.36%
Aug07 0.18% -0.37% 2.05%
Mar08 0.03% -0.32% 0.35%
Sept08 0.12% -0.72% 1.11%
2009Q1 0.09% -0.39% 1.38%
2009Q2 0.09% -0.68% 0.69%
Flash Crash 0.16% -0.07% 0.31%
Apr14 0.04% -0.31% 0.28%
Oct14 0.07% -0.26% 0.54%
Low Volatility Bull Market 0.04% 0.04% 0.04%
GFC Crash 0.07% -1.42% 2.05%
Recovery 0.02% -0.50% 0.76%
New Normal 0.02% -0.82% 0.56%
Top 10 long positions of all time max
WSM-8284 1.32%
VSEA-20037 1.31%
MMC-4914 1.31%
LNCR-4501 1.31%
PPDI-14288 1.31%
BMY-980 1.31%
VIVO-4244 1.31%
MRVL-21666 1.31%
PSS-15005 1.31%
ELS-8516 1.31%
Top 10 short positions of all time max
THOR-15228 -1.31%
SOHU-21813 -1.31%
GDP-13363 -1.31%
DEI-32770 -1.31%
IVZ-16589 -1.31%
ESE-2608 -1.31%
CHS-8612 -1.31%
ATHR-25967 -1.31%
OXPS-26978 -1.31%
IN-17948 -1.31%
Top 10 positions of all time max
WSM-8284 1.32%
VSEA-20037 1.31%
THOR-15228 1.31%
SOHU-21813 1.31%
MMC-4914 1.31%
GDP-13363 1.31%
LNCR-4501 1.31%
DEI-32770 1.31%
IVZ-16589 1.31%
PPDI-14288 1.31%
All positions ever held max
WSM-8284 1.32%
VSEA-20037 1.31%
THOR-15228 1.31%
SOHU-21813 1.31%
MMC-4914 1.31%
GDP-13363 1.31%
LNCR-4501 1.31%
DEI-32770 1.31%
IVZ-16589 1.31%
PPDI-14288 1.31%
BMY-980 1.31%
ESE-2608 1.31%
VIVO-4244 1.31%
CHS-8612 1.31%
ATHR-25967 1.31%
MRVL-21666 1.31%
OXPS-26978 1.31%
IN-17948 1.31%
ANF-15622 1.31%
PSS-15005 1.31%
ELS-8516 1.31%
UNM-7797 1.31%
CYBS-20197 1.31%
ENS-26530 1.31%
HCBK-20374 1.31%
FEIC-13030 1.31%
SXT-22272 1.31%
MTD-17895 1.31%
RGS-6453 1.31%
YUM-17787 1.31%
... ...
OUT-46644 0.83%
CLNS-47230 0.83%
HYH-47929 0.83%
SSCC-39821 0.82%
CDK-47752 0.82%
BRX-45755 0.82%
NAVI-46782 0.82%
LPT-11514 0.82%
OA-600 0.82%
AEC-10073 0.82%
INFO-47163 0.82%
KLXI-48169 0.82%
SIR-42606 0.82%
REX-9642 0.82%
STAG-41271 0.82%
ART-38765 0.82%
AMTG-41738 0.81%
ARNA-21724 0.81%
ARR-35162 0.81%
KEM-4265 0.81%
RSO-28076 0.81%
CIM-35081 0.80%
SAIA-24115 0.80%
ARI-38759 0.80%
OGS-46180 0.80%
SYA-39160 0.80%
CPE-12011 0.80%
WAL-27421 0.79%
GPT-26520 0.79%
BTH-11258 0.78%

2230 rows × 1 columns

In [6]:
import pyfolio as pf
import numpy as np
import scipy.stats as st
returns = bt.daily_performance.returns
import pandas as pd
print 'median', np.median(returns)
print 'skew', st.skew(returns)
print pd.Series(returns).describe()
median 0.00046013658893
skew 0.878222156722
count    2015.000000
mean        0.000498
std         0.001992
min        -0.013991
25%        -0.000505
50%         0.000460
75%         0.001435
max         0.020658
Name: returns, dtype: float64
In [ ]: