Quantopian's community platform is shutting down. Please read this post for more information and download your code.
Back to Community
zipline backtest benchmark_period_return only returns 0

I have the code below where I'm trying to backtest a portfolio optimization strategy. I'm running the backtest with zipline, and I'm running the code in a jupyter notebook. I'm trying to compare the models performance to the benchmark using the "benchmark_period_return" column in the dataframe I create from reading the pickle file back in after zipline finishes. I tried changing to a different date range in 2019 for my backtest and the benchmark_period_return column all went to 0. I changed back to the original date range I was working with

"start 2015-12-31 --end 2017-12-31"

but it still returns all 0 now for benchmark_period_return. Does anyone see what the issue might be and suggest how to fix it? I'm pretty new to zipline. I've also included the output from the dataframe.

code:

  # reading in libraries  
    %load_ext watermark  
    %load_ext zipline  
    %matplotlib inline  
    %config InlineBackend.figure_format = 'retina'  
    import numpy as np  
    import matplotlib.pyplot as plt  
    import pandas as pd  
    import zipline  
    import warnings  
    import pyfolio as pf  
    import empyrical as ep  
    from yahoofinancials import YahooFinancials  
    from pypfopt.efficient_frontier import EfficientFrontier  
    from pypfopt import risk_models  
    from pypfopt import expected_returns  
    # import helper functions  
    import qf_helper_functions as qf  
    plt.style.use('seaborn')  
    plt.rcParams['figure.figsize'] = [16, 9]  
    plt.rcParams['figure.dpi'] = 200  
    warnings.simplefilter(action='ignore', category=FutureWarning)  


    %%zipline --start 2015-12-31 --end 2017-12-31 --capital-base 50000.0 -o simple_optimization_30D_rebalance.pkl  
    # imports  
    from zipline.api import symbols, record, order_target_percent,set_benchmark,symbol  
    from zipline.finance import commission  
    import numpy as np  
    import pandas as pd  
    from pypfopt.efficient_frontier import EfficientFrontier  
    from pypfopt import risk_models  
    from pypfopt import expected_returns  
    def initialize(context):  
        context.set_commission(commission.PerShare(cost=0.0, min_trade_cost=0))  
        context.assets = symbols('TSLA', 'MSFT', 'FB', 'TWTR')  
    #     set_benchmark()  
        context.n_assets = len(context.assets)  
        context.window = 252  
        context.rebalance_period = 30  
        context.time = 0  

    def handle_data(context, data):  
        cleaned_weights = []  
        if context.time == 0 or (context.time % context.rebalance_period == 0):  
            # extract prices  
            prices_df = data.history(context.assets, fields='price',  
                                  bar_count=context.window + 1, frequency='1d')  
            # creating log returns to de-trend and remove seasonality  
            log_ret = np.log(prices_df/prices_df.shift(1))  
            def get_ret_vol_sr(weights):  
                """  
                Takes in weights, returns array or return,volatility, sharpe ratio  
                """  
                weights = np.array(weights)  
                ret = np.sum(log_ret.mean() * weights) * 252  
                vol = np.sqrt(np.dot(weights.T, np.dot(log_ret.cov() * 252, weights)))  
                sr = ret/vol  
                return np.array([ret,vol,sr])  
            from scipy.optimize import minimize  
            # objective function  
            def neg_sharpe(weights):  
                return  get_ret_vol_sr(weights)[2] * -1  
            # Contraints  
            def check_sum(weights):  
                '''  
                Returns 0 if sum of weights is 1.0  
                '''  
                return np.sum(weights) - 1  
            # By convention of minimize function it should be a function that returns zero for conditions  
            cons = ({'type':'eq','fun': check_sum})  
            # 0-1 bounds for each weight  
            bounds = ((0, 1), (0, 1), (0, 1), (0, 1))  
            # Initial Guess (equal distribution)  
            init_guess = [0.25,0.25,0.25,0.25]  
            # Sequential Least SQuares Programming (SLSQP).  
            opt_results = minimize(neg_sharpe,init_guess,method='SLSQP',bounds=bounds,constraints=cons)  
            weights=opt_results.x  
            cleaned_weights=dict(zip(prices_df.columns.tolist(),weights.tolist()))  

            # submit orders  
            for asset in context.assets:  
                order_target_percent(asset, cleaned_weights[asset])  
        record(weights=cleaned_weights)  
        context.time += 1  

    simple_optimization_30D_rebalance_df = pd.read_pickle('simple_optimization_30D_rebalance.pkl')  


    print(simple_optimization_30D_rebalance_df[:10])  
algo_volatility  algorithm_period_return alpha  \  
2015-12-31 21:00:00+00:00              NaN                 0.000000  None  
2016-01-04 21:00:00+00:00         0.005480                -0.000488  None  
2016-01-05 21:00:00+00:00         0.046403                 0.004311  None  
2016-01-06 21:00:00+00:00         0.043378                 0.003082  None  
2016-01-07 21:00:00+00:00         0.330778                -0.042578  None  
2016-01-08 21:00:00+00:00         0.297078                -0.046728  None  
2016-01-11 21:00:00+00:00         0.276735                -0.045403  None  
2016-01-12 21:00:00+00:00         0.287919                -0.029249  None  
2016-01-13 21:00:00+00:00         0.318156                -0.063774  None  
2016-01-14 21:00:00+00:00         0.351949                -0.036099  None  

                           benchmark_period_return  benchmark_volatility  \  
2015-12-31 21:00:00+00:00                      0.0                   NaN  
2016-01-04 21:00:00+00:00                      0.0                   0.0  
2016-01-05 21:00:00+00:00                      0.0                   0.0  
2016-01-06 21:00:00+00:00                      0.0                   0.0  
2016-01-07 21:00:00+00:00                      0.0                   0.0  
2016-01-08 21:00:00+00:00                      0.0                   0.0  
2016-01-11 21:00:00+00:00                      0.0                   0.0  
2016-01-12 21:00:00+00:00                      0.0                   0.0  
2016-01-13 21:00:00+00:00                      0.0                   0.0  
2016-01-14 21:00:00+00:00                      0.0                   0.0  

                           beta  capital_used  ending_cash  ending_exposure  \  
2015-12-31 21:00:00+00:00  None       0.00000  50000.00000             0.00  
2016-01-04 21:00:00+00:00  None  -48847.89174   1152.10826         48823.48  
2016-01-05 21:00:00+00:00  None       0.00000   1152.10826         49063.42  
2016-01-06 21:00:00+00:00  None       0.00000   1152.10826         49001.98  
2016-01-07 21:00:00+00:00  None       0.00000   1152.10826         46719.00  
2016-01-08 21:00:00+00:00  None       0.00000   1152.10826         46511.50  
2016-01-11 21:00:00+00:00  None       0.00000   1152.10826         46577.74  
2016-01-12 21:00:00+00:00  None       0.00000   1152.10826         47385.46  
2016-01-13 21:00:00+00:00  None       0.00000   1152.10826         45659.20  
2016-01-14 21:00:00+00:00  None       0.00000   1152.10826         47042.94  

                           ending_value  \  
2015-12-31 21:00:00+00:00          0.00  
2016-01-04 21:00:00+00:00      48823.48  
2016-01-05 21:00:00+00:00      49063.42  
2016-01-06 21:00:00+00:00      49001.98  
2016-01-07 21:00:00+00:00      46719.00  
2016-01-08 21:00:00+00:00      46511.50  
2016-01-11 21:00:00+00:00      46577.74  
2016-01-12 21:00:00+00:00      47385.46  
2016-01-13 21:00:00+00:00      45659.20  
2016-01-14 21:00:00+00:00      47042.94  

                                                 ...                          \  
2015-12-31 21:00:00+00:00                        ...  
2016-01-04 21:00:00+00:00                        ...  
2016-01-05 21:00:00+00:00                        ...  
2016-01-06 21:00:00+00:00                        ...  
2016-01-07 21:00:00+00:00                        ...  
2016-01-08 21:00:00+00:00                        ...  
2016-01-11 21:00:00+00:00                        ...  
2016-01-12 21:00:00+00:00                        ...  
2016-01-13 21:00:00+00:00                        ...  
2016-01-14 21:00:00+00:00                        ...  

                           short_value  shorts_count    sortino  \  
2015-12-31 21:00:00+00:00          0.0             0        NaN  
2016-01-04 21:00:00+00:00          0.0             0 -11.224972  
2016-01-05 21:00:00+00:00          0.0             0  80.962001  
2016-01-06 21:00:00+00:00          0.0             0  18.614170  
2016-01-07 21:00:00+00:00          0.0             0  -6.614699  
2016-01-08 21:00:00+00:00          0.0             0  -6.625288  
2016-01-11 21:00:00+00:00          0.0             0  -5.951541  
2016-01-12 21:00:00+00:00          0.0             0  -3.490858  
2016-01-13 21:00:00+00:00          0.0             0  -5.846201  
2016-01-14 21:00:00+00:00          0.0             0  -2.985248  

                           starting_cash  starting_exposure  starting_value  \  
2015-12-31 21:00:00+00:00    50000.00000               0.00            0.00  
2016-01-04 21:00:00+00:00    50000.00000               0.00            0.00  
2016-01-05 21:00:00+00:00     1152.10826           48823.48        48823.48  
2016-01-06 21:00:00+00:00     1152.10826           49063.42        49063.42  
2016-01-07 21:00:00+00:00     1152.10826           49001.98        49001.98  
2016-01-08 21:00:00+00:00     1152.10826           46719.00        46719.00  
2016-01-11 21:00:00+00:00     1152.10826           46511.50        46511.50  
2016-01-12 21:00:00+00:00     1152.10826           46577.74        46577.74  
2016-01-13 21:00:00+00:00     1152.10826           47385.46        47385.46  
2016-01-14 21:00:00+00:00     1152.10826           45659.20        45659.20  

                           trading_days  \  
2015-12-31 21:00:00+00:00             1  
2016-01-04 21:00:00+00:00             2  
2016-01-05 21:00:00+00:00             3  
2016-01-06 21:00:00+00:00             4  
2016-01-07 21:00:00+00:00             5  
2016-01-08 21:00:00+00:00             6  
2016-01-11 21:00:00+00:00             7  
2016-01-12 21:00:00+00:00             8  
2016-01-13 21:00:00+00:00             9  
2016-01-14 21:00:00+00:00            10  

                                                                transactions  \  
2015-12-31 21:00:00+00:00                                                 []  
2016-01-04 21:00:00+00:00  [{'dt': 2016-01-04 21:00:00+00:00, 'amount': 3...  
2016-01-05 21:00:00+00:00                                                 []  
2016-01-06 21:00:00+00:00                                                 []  
2016-01-07 21:00:00+00:00                                                 []  
2016-01-08 21:00:00+00:00                                                 []  
2016-01-11 21:00:00+00:00                                                 []  
2016-01-12 21:00:00+00:00                                                 []  
2016-01-13 21:00:00+00:00                                                 []  
2016-01-14 21:00:00+00:00                                                 []  

                          treasury_period_return  \  
2015-12-31 21:00:00+00:00                    0.0  
2016-01-04 21:00:00+00:00                    0.0  
2016-01-05 21:00:00+00:00                    0.0  
2016-01-06 21:00:00+00:00                    0.0  
2016-01-07 21:00:00+00:00                    0.0  
2016-01-08 21:00:00+00:00                    0.0  
2016-01-11 21:00:00+00:00                    0.0  
2016-01-12 21:00:00+00:00                    0.0  
2016-01-13 21:00:00+00:00                    0.0  
2016-01-14 21:00:00+00:00                    0.0  

                                                                     weights  
2015-12-31 21:00:00+00:00  {Equity(2892 [TWTR]): 4.2837292936461303e-16, ...  
2016-01-04 21:00:00+00:00                                                 []  
2016-01-05 21:00:00+00:00                                                 []  
2016-01-06 21:00:00+00:00                                                 []  
2016-01-07 21:00:00+00:00                                                 []  
2016-01-08 21:00:00+00:00                                                 []  
2016-01-11 21:00:00+00:00                                                 []  
2016-01-12 21:00:00+00:00                                                 []  
2016-01-13 21:00:00+00:00                                                 []  
2016-01-14 21:00:00+00:00                                                 []  

[10 rows x 38 columns]