Quantopian's community platform is shutting down. Please read this post for more information and download your code.
Back to Community
No trades in a given minute and NaN values in history

When using the close_price field in history, any periods without a trade generate an NaN value. Is there anyway to remove that feature so it just leaves no data? I do not want it forward filled like price, but simply no data.

If that can not be done is there away to calculate the EMA with those NaN values included in the data set? A way to have the algo overlook the NaN fields?

1 response

Ian,

You can look at dropna() in pandas (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html)

It'll remove the NaNs in whichever axis you specify.

Disclaimer

The material on this website is provided for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation or endorsement for any security or strategy, nor does it constitute an offer to provide investment advisory services by Quantopian. In addition, the material offers no opinion with respect to the suitability of any security or specific investment. No information contained herein should be regarded as a suggestion to engage in or refrain from any investment-related course of action as none of Quantopian nor any of its affiliates is undertaking to provide investment advice, act as an adviser to any plan or entity subject to the Employee Retirement Income Security Act of 1974, as amended, individual retirement account or individual retirement annuity, or give advice in a fiduciary capacity with respect to the materials presented herein. If you are an individual retirement or other investor, contact your financial advisor or other fiduciary unrelated to Quantopian about whether any given investment idea, strategy, product or service described herein may be appropriate for your circumstances. All investments involve risk, including loss of principal. Quantopian makes no guarantees as to the accuracy or completeness of the views expressed in the website. The views are subject to change, and may have become unreliable for various reasons, including changes in market conditions or economic circumstances.