When I run tests on zipline, outside of Quantopian I get these results...
SIDData({'high': 143.25821922497602,
'open': 142.23879706969737,
'price': 143.17,
'datetime': Timestamp('2013-01-02 00:00:00+0000', tz='UTC'),
'volume': 192059000,
'low': 141.8663158975763,
'sid': 'SPY',
'source_id': 'DataPanelSource-7249b6b52a70adba5af10f6ec6ae7a34',
'close': 143.16999999999999,
'dt': Timestamp('2013-01-02 00:00:00+0000', tz='UTC'), 'type': 4})
However when I run on Quantopian I get...
SIDData({'high': 146.11,
'price': 146.09,
'datetime': datetime.datetime(2013, 1, 2, 0, 0, tzinfo=),
'volume': 152841319,
'open_price': 145.11,
'low': 144.73,
'sid': Security(8554, symbol=u'SPY',
security_name=u'SPDR S&P 500 ETF TRUST',
exchange=u'NYSE ARCA EXCHANGE',
start_date=datetime.datetime(1993, 1, 29, 5, 0, tzinfo=),
end_date=datetime.datetime(2014, 1, 21, 5, 0, tzinfo=),
first_traded=None),
'source_id': 'AdjustedTradeSource320db307eabdf0e8f3f8a13e7bde3675',
'close_price': 146.09,
'dt': datetime.datetime(2013, 1, 2, 0, 0, tzinfo=), 'type': 4})
Just The Values:
Quantopian zipline
high 146.11 143.25821922497602
open 145.11 142.23879706969737
price 146.09 143.17
low 144.73 141.8663158975763
close 146.09 143.16999999999999
If Quantopian uses zipline as the backend, where does this difference come from?
How can I correct for this? I am using zipline to train a system which shows promising results, however when I convert it over to Quantopian the data is no longer valid because the input data was trained on a different set of values.